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Abstract

Information systems generally involve storage and analytics of large-scale data, many of

which may be highly sensitive (e.g., personal information, medical records). It is vital to ensure that

these systems not only provide essential functionalities at large scale efficiently but also achieve a high

level of security against cyber threats. However, there are significant research challenges in offering

security and privacy for such information systems while preserving their original functionalities (e.g.,

search, analytics) effectively. Hence, there is a critical need for efficient cryptographic protocols that

can address data privacy vs. utilization dilemma for real-life applications.

In this dissertation, we introduce a new series of privacy-enhancing technologies toward

enabling breach-resilient and functional information systems. We focus on privacy-preserving

data outsourcing applications featuring critical functionalities such as data query, accessibility and

analytics. Specifically, we designed new dynamic searchable encryption schemes that permit the client

to perform encrypted search and update queries on the encrypted data. We proposed new distributed

oblivious access frameworks that allow the client to access and compute over the outsourced data

efficiently without leaking the access pattern, thereby achieving a very high level of privacy in the

presence of powerful adversaries. Finally, we built several privacy-preserving data storage and query

platforms, which harness Trusted Execution Environment to enable critical functionalities (e.g.,

search, update, concurrent access), security (e.g., access control, integrity) and privacy properties

(e.g., access pattern obliviousness) in a highly efficient manner (i.e., high throughput, low delay).
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Chapter 1: Introduction

Data privacy vs. utilization is one of the most fundamental dilemmas in many applications

ranging from personal data outsourcing to large-scale breach-resilient infrastructures. Recent

cyberattacks targeting online applications (e.g., Apple iCloud, Equifax, British Airways), in which

the privacy of millions of customers was compromised, have demonstrated the importance of preserving

data secrecy on the untrusted execution environment. While standard encryption techniques (e.g.,

AES) can offer data confidentiality, they also prevent the user from performing even simple operations

(e.g., search/update) on the encrypted data, thereby diminishing the data usability. On the other

hand, although there exist functional encryption techniques such as homomorphic encryption [69]

and garbled circuit [188] that can enable data confidentiality and secure computation simultaneously,

they are mainly designed for general purposes. These techniques may incur high communication and

computation overhead, which may not be feasible for some real-world applications that have specific

resource constraints and functionality requirements.

To enable some fundamental functionalities (e.g., search/update) while preserving user privacy,

recent studies focus on designing either novel cryptographic protocols with provable security (e.g.,

searchable encryption) [35, 36, 49, 109], or encrypted queries that can be compliant with the legacy

(database) infrastructures (e.g., mySQL, mongoDB) [147]. Despite many efforts, all these techniques

have been shown to be vulnerable against many practical attacks that exploited the way how the user

access their own data on the untrusted memory (e.g., access pattern) [34, 103, 124, 137, 148, 190].

To seal such a leakage, several secure access techniques such as Oblivious RAM [75] (ORAM) and
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Private Information Retrieval [45] (PIR) were proposed. Despite their very high level of privacy and

security guarantee, all these techniques incur high communication/computation overhead, which was

shown costly to be used in many large-scale applications [20, 136].

Our main research objective is to address the security vs. functionality (e.g., private search,

update, access, analytics) dilemma of certain applications by creating new cryptographic schemes,

which can meet security requirements, while respecting the original functionalities along with

optimizations. This generally involves a three-step research process as follows. We first determine the

critical security requirements of real-world applications and then examine their unique characteristics

(e.g., architecture, performance, system requirements). Second, we seek synergies among various

cryptographic primitives to fill the needs of such applications regarding their special constraints while

guaranteeing provable security. Finally, we fully implement the proposed techniques and strictly

evaluate their performance on a myriad of real-world infrastructures.

We outline our contributions toward enabling privacy-preserving and functional information

systems in the following section.

1.1 Contributions

In this dissertation, we propose a series of privacy-enhancing techniques, which features a

high level of security and privacy while, at the same time, offering mandatory functionalities (e.g.,

search, update, analytics) for critical cyberinfrastructures. To make our techniques efficient and

more practical to be used in practice, we explore a broad range of system architecture spanning from

the standard (client-server) model to the distributed setting and Trusted Execution Environments

(TEE). We highlight our proposed schemes and their properties as follows.
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1. New Efficient Dynamic Searchable Encryption Schemes: We develop several new searchable

encryption techniques called IM-DSSE [97] (see §3.4), FS-DSSE [143] (see §3.5) with rigorous

security analyses and full-fledged implementations. One of the most notable security features is

that they are among the first to offer forward privacy, backward privacy and size obliviousness,

all of which are mandatory to prevent statistical analysis attacks. We deployed all the proposed

schemes on real cloud platforms, and the experimental results confirmed their significant

advantages over the state-of-the-art in various performance and security metrics.

2. Efficient Distributed Oblivious Access Techniques: While Oblivious RAM (ORAM) [75] can hide

the access pattern leakage in many applications (e.g., searchable encryption, data outsourcing,

secure CPU, multi-party computation, blockchains), state-of-the-art ORAM schemes either

incur a logarithmic communication overhead [169, 179] or expensive cryptographic operations

such as homomorphic encryption [54], both of which were shown costly in the context of data

outsourcing [20, 89, 136]. Toward making ORAM more practical, we have investigated ORAM in

various settings including distributed computation and TEE. We first construct S3ORAM[89, 95],

a multi-server ORAM framework based on secret sharing (see §4.4). S3ORAM is among the

first distributed ORAM that offers the most desirable properties for data outsourcing including

low delay, low client-server bandwidth and small storage overhead without relying on costly

cryptographic primitives such as homomorphic encryption. We further develop MACAO [87], a

multi-server ORAM framework, which not only inherits all the desired performance properties

from S3ORAM but also offers security guarantee against malicious adversaries (see §4.5). We

fully implemented both S3ORAM and MACAO and the experiments on real-cloud platforms

indicated that they were one order of magnitude faster than most efficient (single-server) ORAMs
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featuring logarithmic bandwidth, and at least three orders of magnitude faster than HE-based

ORAM alternatives featuring constant bandwidth.

3. Oblivious Data Structures for Searchable Encryption and Database Services: Access pattern is

one of the most fundamental leakages in searchable encryption, on which many attacks have

exploited to compromise the data and keyword privacy. We develop a series of oblivious data

structures for searchable encryption, which can conceal/mitigate the search/update pattern

leakages on the encrypted index while retaining the efficiency of search and update functionalities.

We propose DOD-DSSE, which breaks the linkability between consecutive search/update queries

by distributing the encrypted index across two non-colluding servers (see §4.6.1). This strategy

prevents statistical attacks from exploiting the public information about the keyword frequency

while achieving a high level of efficiency. We further develop ODSE framework [93, 94], which

offers fully oblivious search and update operations on the encrypted index and robustness against

the malicious adversaries with information-theoretic security (see §4.6.2). This is achieved

by exploiting some unique properties of searchable encryption along with synergizing various

efficient oblivious access primitives. We further propose several oblivious data structures called

OMAT and OTREE [88], which are specially designed to be effectively integrated with state-of-

the-art ORAM schemes to enable oblivious queries on legacy database management systems

(e.g., MongoDB, SQL) (see §4.6.3). The experimental results demonstrated the performance of

our proposed techniques, compared with the state-of-the-art when tested on commodity cloud

platforms (i.e., Amazon EC2).

4. Hardware-Supported Oblivious Storage and Query Platforms: We also explore secure hardware

techniques to build privacy-preserving and functional data storage systems. We designed

POSUP platform [91], which enables oblivious search and update functionalities with very low
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latency for personal data outsourcing, by synergizing Intel SGX, efficient ORAM paradigms and

oblivious data structures (see §5.4). We fully implemented POSUP and intensively benchmarked

its performance on a very large dataset (i.e., full Wikipedia dataset) with commodity hardware.

The experimental results confirmed the efficiency of POSUP, where it was up to three orders of

magnitude faster than the state-of-the-art. Finally, we build MOSE [86], an oblivious storage

platform using Intel SGX to enable private concurrent access for multiple users sharing a

common database (see §5.5).

1.2 Dissertation Organization

We organize this dissertation as follows. We first present common notation being used

throughout the rest of the dissertation in §2. In §3, we present a general overview of searchable

encryption as well as our proposed IM-DSSE framework [97] (§3.4) and FS-DSSE scheme [143] (§3.5)

in detail. In §4, we discuss ORAM and present our proposed S3ORAM framework [89] (§4.4) and

MACAO frameworks §4.5 in detail. We also present our proposed oblivious data structures techniques

in §4.6 including DOD-DSSE (§4.6.1), ODSE (§4.6.2) and OMAT (§4.6.3). In §5, we present the

overview of hardware-supported privacy-preserving information processing systems followed by our

proposed POSUP platform [91] (§5.4) and MOSE platform [86] (§5.5) in detail. Finally, §6 concludes

this dissertation and discusses our future work.
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Chapter 2: Notation

We start by defining notation being frequently used in this dissertation. We denote || and ⊕

as the concatenation and the Exclusive-OR (XOR) operation, respectively. |x| denotes the size of

x. Given a bit b, ¬b means the complement of b. bxc and dxe denote the floor and the ceiling of x,

respectively. 〈·〉bin denotes the binary representation. [N ] means {1, . . . , N}. We denote {0, 1}∗ as a

set of binary strings of any finite length. x $← S denotes that x is randomly and uniformly selected

from set S. |S| denotes the cardinality of set S. S \ {x} (or S − {x}) denotes x ∈ S is removed from

S. (x1, . . . , xl)
$← S means (x1

$← S, . . . , xl $← S).

Given u and v as vectors with the same length, u · v denotes the dot product of u and v.

Given an n-dimensional vector u and a matrix I of size n×m, v = u · I denotes the matrix product

of u and I resulting in an m-dimensional vector v. I[i][∗] (or I[i, ∗]) and I[∗][j] (or I[∗, j]) denote

accessing the row i and column j of matrix I, respectively. A[i, j] denotes accessing the element at

row i and column j of A. If I is a matrix then Iu denotes the row indexed by u (i.e., Iu = I[u, ∗]).

We abuse this notation to also indicate a whole column indexed by u (i.e., Iu = I[∗, u]). This abuse

of notation simplifies somewhat the presentation of our schemes. I[∗, a . . . b] (or I[∗][a . . . b]) denotes

accessing columns from a to b of matrix u[i] denotes accessing the i-th component of u. I[∗][i . . . j]

denotes accessing the columns from i to j of matrix I.

We denote an encryption scheme with Indistinguishability against Chosen Plaintext Attack

(IND-CPA) as a triplet E = (Gen,Enc,Dec), where k ← E .Gen(1λ) generates a symmetric key k

given a security parameter 1λ; c← E .Enck(M) returns the ciphertext c of M encrypted with key k;
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M ← E .Deck(c) returns the plaintext M of c, which is previously encrypted by k. Given a counter

u, we denote c← Enck(M,u) as IND-CPA encryption scheme, which takes as input a secret key k,

the counter u and a message M and returns a ciphertext c. We denote M ← Deck(c, u) as IND-CPA

decryption scheme, which takes as input a key k, the counter u and ciphertext c, and returns message

M .

We denote a Pseudo Random Function (PRF) is a polynomial-time computable function,

which is indistinguishable from a true random function by any PPT adversary We denote a keyed

Pseudo Random Function (PRF) as τ ← Gk (x), which takes as input a secret key k $← {0, 1}κ and a

string x, and returns a token/key r. We also denote τ ← KDF(x) as a key derivation function, which

takes as input an arbitrary string x ∈ {0, 1}∗ and outputs a key τ . We denote H : {0, 1}|x| → {0, 1}

as a Random Oracle (RO), which takes an input x and returns a bit.

We denote a finite field as Fp, where p is a prime. Unless otherwise stated, a · b (or ab)

denotes the scalar multiplication, and all arithmetic operations are performed over Fp.
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Chapter 3: Searchable Encryption1

3.1 Introduction

The advent of cloud storage and computing platform provides vast benefits to the human

society and IT industry. One of the most eminent cloud services is Storage-as-a-Service (SaaS),

which offer a sophisticated infrastructure for millions of users, ranging from individuals to large-scale

businesses, to store and access their own data remotely, thereby significantly reducing the data

management and maintenance costs. Despite its effectiveness, SaaS also brings significant security

and privacy concerns. Specifically, once a user outsources their personal data to the cloud, sensitive

information (e.g., email, bank transactions) might be exploited by a malicious party (i.e., malware).

Standard encryption such as Advanced Encryption Standard (AES) can enable data confidentiality,

However, it also prevents the user from searching or updating information on the cloud and therefore,

completely invalidates the benefits of using SaaS services. Such a data privacy vs. utilization dilemma

poses a critical research challenge in enabling the security and privacy while, at the same time,

retaining the functionality and efficiency of the underlying cloud services.

Searchable Symmetric Encryption (SSE) [49] permits a user to encrypt data in such a way

that they can later perform keyword searches on. These encrypted queries are performed via “search

tokens” [165] over an encrypted index, which represents the relationship between search token

(keywords) and encrypted files. A prominent application of SSE is to enable privacy-preserving

keyword search on the cloud (e.g., Amazon S3), where the data owner can outsource a collection of
1This chapter was published in [97, 143]. Permission is included in Appendix A.
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encrypted files and perform keyword searches on it without revealing the file and query contents

[109]. Preliminary SSE schemes (e.g., [49, 163]) only provide search-only functionality on static data

(i.e., no dynamism), which strictly limits their applicability due to the lack of update capacity. Later,

several Dynamic SSE (DSSE) schemes [35, 109] were proposed that permit the user to add and

delete files after the system is set up. As a trade-off between security efficiency, there is no single

DSSE scheme that can outperform all the other alternatives in terms of all the metrics: privacy

(e.g., information leakage), performance (e.g., search, update delay), storage efficiency and query

functionality (e.g., range, boolean).

Although a number of DSSE schemes have been introduced in the literature, most of them

only provide a theoretical analysis and a prototype implementation. The lack of experimental

performance evaluations on real platforms creates a challenge in assessing the application and

performance of proposed DSSE schemes, as the impacts of hidden computation costs, multi-round

communication delay and storage blowup might be overlooked. Moreover, several studies have

shown that the most efficient (sublinear) DSSE schemes [35, 82] leak significant information and

are vulnerable to statistical inference analysis [34, 148, 190]. For instance, Zhang et al. [190] has

demonstrated a file-injection attack strategy, in which the semi-honest adversary can recover all

keywords being searched or updated in the context of applying DSSE for personal email. It has been

identified that the forward-privacy is an imperative security feature for modern DSSE constructions to

mitigate the impact of the attack. Several forward-secure DSSE schemes with an optimal asymptotic

complexity have been proposed, they incur either high delay due to public-key operations [26], or

high storage blow-up at both client and server side [165, 189].

Therefore, it is vital to develop new DSSE schemes that can achieve a high level of security

with a well-quantified information leakage, while maintaining a performance and functionality balance
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between the search and update operations. More importantly, it is critical that the performance

of proposed DSSE schemes should be experimentally evaluated in a realistic cloud environment

with various parameter settings, rather than relying on asymptotic results. The investigation of

alternative data structures and their optimized implementations on commodity hardware seem to be

the key factors towards achieving these objectives.

3.2 Related Work

SE has been proposed in both symmetric [97, 109, 163] (known as SSE) and asymmetric

[15, 16, 24] (commonly known as PEKS) settings. In this dissertation, we mainly focus on SSE

techniques. SSE was first introduced by Song et al. [163]. Curtmola et al. [49] proposed a

sublinear SSE scheme and introduced the security notion for SSE called adaptive security against

chosen-keyword attacks (CKA2) (see Definition 1). Refinements of [49] have been proposed, which

offer extended functionalities [33, 171]. However, the static nature of those schemes limited their

applicability to applications that require dynamic file collections. Kamara et al. were among the

first to develop a DSSE scheme in [109] that could handle dynamic file collections via an encrypted

index. However, it leaks significant information for updates and it is not parallelizable. Kamara et al.

[108] proposed a DSSE scheme, which leaks less information than that of [109] and is parallelizable.

Recently, a series of new DSSE schemes [26, 35, 82, 107, 138, 165] have been proposed, which offer

various trade-offs between security, functionality and efficiency properties such as small leakage [165],

scalable searches with various query and data types [36, 65, 107, 170, 175–177], or high efficiency

[138]. Inspired by the work from [35], Kamara et al. in [107] proposed a new sublinear DSSE scheme,

which supports more complex queries such as disjunctive and boolean queries.
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Zhang et al. in [190] later showed that new DSSE constructions should offer the forward-

privacy property to mitigate the impact of practical attacks. Several forward-private DSSE schemes

achieving high efficiency in terms of asymptotic complexity and actual performance have been

proposed. Specifically, Bost et al. in [26] proposed Sophos, which offers forward-privacy using an

asymmetric primitive (i.e., trapdoor permutation). Rizomiliotis et al. in [153] leveraged ORAM

techniques [169] (see §4) to enable forward-privacy. Recently, several forward-private DSSE schemes

only relying on symmetric primitives have been proposed [58, 115, 118, 164], some of which offer

parallelism [58, 115, 118],and improved I/O access with computation efficiency using a caching

strategy [115, 118, 164]. For example, Lai et al. [118] modeled the relationship between keywords

and files in DSSE as bipartite graphs. The authors also proposed a novel data structure called

cascaded triangles, which offers parallelism and efficient update (add/delete). Kim et al. [115]

leveraged two hash tables to integrate forward index and inverted index together in the form of

encrypted index, which offers efficient update with direct deletion. Several forward-private DSSE

schemes, which offer extended query functionalities such as boolean query [107], similarity search

[177] were also proposed. Bost et al. [27] proposed some (single-keyword) DSSE schemes that achieve

both forward-privacy and backward-privacy with optimal asymptotic complexity using asymmetric

primitives.

Due to the deterministic keyword-file relationship, most traditional DSSE schemes (including

our framework) leak search and access patterns (to be defined in Definition 2), which are vulnerable

to statistical inference attacks [34, 103, 124, 148, 190]). Several DSSE schemes have been proposed

to deal with such leakages [25]) but they are neither efficient nor provably secure. ORAM [169] or

Private Information Retrieval (PIR) [45, 73] can hide search and access patterns in DSSE. However,

its cost is still high to be applied to DSSE in practice [136].
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3.3 Preliminaries

The security notion for DSSE is Dynamic adaptive security against Chosen-Keyword Attacks

(CKA2) security [108, 109, 165, 189]), which captures information leakage via leakage functions

characterizing the information leakage due to search and update operations (see [108, 165, 189] for

the details).

Definition 1 (IND-CKA2 Security [49, 109]). Let A be a stateful adversary and S be a stateful

simulator. Consider the following probabilistic experiments:

• RealA(κ): The challenger executes K ← Gen(1κ). A produces (δ, f) and receives (γ, C) ←

EncK(δ, f) from the challenger. A makes polynomially bounded number of adaptive queries

Query ∈ (w, fid, fid′) to the challenger. If Query = w is a keyword search query then A receives

a search token τw ← SearchToken(K, w) from the challenger. If Query = fid is a file addition

query then A receives an addition token (τf , c) ← AddToken(K, fid) from the challenger. If

Query = fid′ is a file deletion query then A receives a deletion token τ ′f ← DeleteToken(K, fid′)

from the challenger. Eventually, A returns a bit b that is the output of the experiment.

• IdealA,S(κ): A produces (δ, f). Given L1(δ, f), S generates and sends (γ, C) to A. A makes

a polynomial number of adaptive queries Query ∈ (w, fid, fid′) to S. For each query, S is

given L2(δ, f, w, t). If Query = w then S returns a simulated search token τw. If Query = fid or

Query = fid′ , S returns a simulated addition token τf or deletion token τ ′f ,respectively. Eventually,

A returns a bit b that is the output of the experiment.

12
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A DSSE is said to be (L1,L2,L3)-secure against adaptive chosen-keyword attacks (CKA2-security)

if for all PPT adversaries A, there exists a PPT simulator S such that

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]| ≤ neg(κ)

All existing DSSE schemes (e.g. [35, 36, 82, 138, 165, 189] with Dynamic CKA2 security leak

data structure-access pattern [168] defined as follows:

Definition 2 (Access Pattern). Access pattern is a data request sequence −→σb = {op
(b)
i , u

(b)
i , data

(b)
i }

q
i=1

of length q over an encrypted memory region on server Sb during search and update operations,

where op
(b)
i ∈ {read(u

(b)
i , data

(b)
i ),write(u

(b)
i , data

(b)
i )}, u(b)

i is the address identifier on Sb to be read

or written and data
(b)
i is the data located at u(b)

i to be read or written on Sb.

Access pattern leaks search patterns and update patterns, which can be defined as follows:

Definition 3 (Search and Update Pattern). Search pattern indicates if the same keyword has been

previously searched. Given a query on w at time t, the search pattern is a binary vector of length t

with 1 at location i if the search i ≤ t was for w, 0 otherwise. Update pattern indicates information

being leaked during an update operation with different levels, in that level 1 (as defined in [189])

leaks least information, which is similar to search pattern.

3.4 IM-DSSE: Searchable Encryption Framework for Critical Cloud Services

Towards filling the gaps between theory and practice in DSSE research community, we

introduce IM-DSSE, a fully-implemented Incidence Matrix-based DSSE framework which favors

desirable properties for realistic privacy-critical cloud systems including high security against practical

attacks and low end-to-end delay. In this framework, we provide the full-fledged implementation of
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our DSSE schemes, which are specially designed to meet various application requirements and cloud

data storage-as-a-service infrastructures in practice.

IM-DSSE offers ideal features for privacy-critical cloud systems as follows.

• Highly secure against file-injection attacks: IM-DSSE offers forward privacy (see [165] or §3.4.5

for definition) which is an imperative security feature to mitigate the impact of practical file-

injection attacks [26, 190]. Only a limited number of DSSE schemes offer this property (i.e.,

[26, 58, 115, 118, 153, 164, 165, 177]), some of which incur high client storage with costly update

(e.g., [165]) or high delay, due to oblivious access techniques (e.g., [153]) and public-key operations

(e.g., [26]). Additionally, IM-DSSE offers size-obliviousness property, where it hides all size

information involved with the encrypted index and update query including (i) update query size

(i.e., number of unique keywords in the updated file); (ii) and the number of keyword-file pairs in

the database. One of the IM-DSSE variants achieves backward privacy defined in [165]. We notice

that Bost et al. in [27] have recently proposed a new DSSE scheme that can achieve all these

security properties with padding. This scheme leverages asymmetric primitives (e.g., puncturable

encryption [79]), which might incur high computation cost. Our scheme relies on symmetric

primitives but with the cost of an extra communication overhead.

• Updates with improved features: (i) IM-DSSE allows to directly update keywords of an existing

file without invoking the file delete-then-add operation sequence. The update in IM-DSSE also

leaks minimal information, where it does not leak timing information (i.e., all updates take the

same amount of time) and how many keywords are being added/deleted in the updated file. (ii)

The encrypted index of our schemes does not grow with update operations and, therefore, it does
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not require re-encryption due to frequent updates. This is more efficient than some alternatives

(e.g.,[165]) in which the encrypted index can grow linearly with the number of deletions.

• Fully parallelizable: IM-DSSE also supports parallelization (as in [35, 58, 115, 118]) for both update

and search operations and, therefore, it takes full advantage of modern computing architecture to

minimize the delay of cryptographic operations. Experiments on Amazon cloud indicates that

the search latency of our framework is highly practical and mostly dominated by the client-server

communication (see §3.4.6).

• Detailed experimental evaluation and open-source framework: We deployed IM-DSSE in a realistic

cloud environment (i.e., Amazon EC2) to assess the practicality of our framework. We exper-

imented with different database sizes and investigated the impacts of network condition and

storage unit on the overall performance. We also evaluated the performance of IM-DSSE on a

resource-limited mobile client. We gave a comprehensive cost breakdown analysis to highlight

the main factors contributing to the overall delay in all these settings. We have released the

implementation of our framework to public to provide opportunities for broad adaptation and

testing [85] (see §3.4.6).

Figure 3.1 illustrates the overview of our IM-DSSE framework for file-storage applications.

3.4.1 System and Threat Models

3.4.1.1 System Model

Our system model comprises one server and one client, which can be mobile resource-

constrained (e.g., cell phone) as illustrated in Figure 3.1. Our model can be extended into multiple

clients that share the same keys.
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To search for keyword 𝑤𝑖:

𝐜𝑖 = (𝑐1, … , 𝑐𝑛′) ENCRYPTED FILES
(𝑐1, … , 𝑐𝑛)

𝐜1 … 𝐜𝑖 … 𝐜𝑚

𝑡1 … 𝑡𝑖 … 𝑡𝑚

ENCRYPTED INDEX

CLOUD
SERVER

1. Generate token
𝑡𝑖

3. Decrypt
(𝑓1, … , 𝑓𝑛′)

To update file 𝑓𝑗:

ENCRYPTED FILES
(𝑐1, … 𝑐𝑗 , … , 𝑐𝑛)

𝑡1 … 𝑡𝑗 … 𝑡𝑚
ENCRYPTED INDEX1. Generate token

𝑡𝑗

1. Encrypt file
𝑐𝑗

2. Look-up associated 𝐜𝑖

2. Update 𝑡𝑗

2. Update 𝑐𝑗

CLIENT

CLIENT

Figure 3.1: IM-DSSE framework for file-storage services.

3.4.1.2 Threat Model

In our threat model, the client is trusted and the server is honest-but-curious, meaning that

it follows the protocol faithfully but attempts to extract sensitive information during the client’s

search/update operations. The server can know the encrypted files, the encrypted index and record

the transcripts of the protocol. Our objective is to allow the client to perform search and update

operations in a secure manner, in which files can be securely retrieved/updated while leaking least

information to the server. Specifically, once the server is compromised, the client should only leak

the query content and no file contents or specific keywords are ever compromised. Since search and

update tokens are deterministic, our IM-DSSE framework leaks search, and file-access patterns as in

all other DSSE schemes. We present the formal security model in §3.4.5.

3.4.2 Data Structures

Our encrypted index is an incidence matrix I, in which I[i, j].v ∈ {0, 1} stores the (encrypted)

relationship between keyword indexing at row i and file indexing at column j, and I[i, j].st ∈ {0, 1}

stores a bit indicating the state of I[i, j].v. Particularly, I[i, j].st is set to 1 or 0 if I[i, j].v is last
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K ← IM-DSSEmain.Gen(1κ): Given security parameter κ, generate secret key K

1: k1 ← E .Gen(1κ) and (k2, k3)
$← {0, 1}κ

2: return K, where K ← {k1, k2, k3}

f ← IM-DSSEmain.DecK(c): Decrypt encrypted file c with key κ
1: f ← Deck1c

′, y||c where c← Tf [y].ct, (c′, y)← c
2: return f

(γ, C)← IM-DSSEmain.EncK(δ, f): Given index δ and plaintext files f, generate corresponding encrypted index γ
and encrypted files C
1: Tw[i].ct← 1, Tf [j].ct← 1, for 0 ≤ i ≤ m, 0 ≤ j ≤ n
2: I[∗, ∗].st← 0 and δ[∗, ∗]← 0
3: Extract (w1, . . . , wm′) from f = {fid1 , . . . , fidn′ }
4: for i = 1, . . . ,m′ do
5: swi ← Gk2 (wi), xi ← Tw(swi)
6: for j = 1, . . . , n′ do
7: if wi appears in fidj then
8: sidj ← Gk2 (idj) and yj ← Tf (sidj )
9: δ[xi, yj ]← 1

10: for i = 1, . . . ,m do
11: ri ← Gk3 (i||ci), where ci ← Tw[i].ct
12: for j = 1, . . . , n do
13: I[i, j]← δ[i, j]⊕H(ri||j||cj), where cj ← Tf [j].ct

14: for j = 1, . . . , n′ do
15: cj ← (c′j , yj), where c′j ← Enck1fidj , yj ||uyj
16: return (γ, C), where γ ← (I, Tf ) and C ← {c1, . . . , cn′}

Figure 3.2: IM-DSSEmain detailed algorithms.

accessed by update or search, respectively. For simplicity, we write I[i, j] to denote I[i, j].v, and be

explicit about the state bit as I[i, j].st.

The encrypted index I is augmented by two static hash tables Tw and Tf that associate a

keyword and file to a unique row and a column, respectively. Specifically, Tf is a file static hash table

whose key-value pair is (sidj , 〈yj , cj〉), where sidj ← Gk2 (idj) for file with identifier idj , column index

yj ∈ {1, . . . , n} is equivalent to the index of sidj in Tf and cj is a counter value. We denote access

operations by yj ← Tf (sidj ) and cj ← Tf [yj ].ct. Tw is a keyword static hash table whose key-value

pair is {swi , 〈xi, ci〉}, where token swi ← Gk2 (wi) for keyword wi, row index xi ∈ {1, . . . ,m} is

equivalent to the index of swi in Tw and ci is a counter value. We denote access operations by

xi ← Tw(swi) and ci ← Tw[xi].ct. All counter values are incremental and initially set to 1. So, the
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client state information is in the form of Tw and Tf , both of which offer (on average) O(1) access

time.

3.4.3 IM-DSSE Main Scheme

We present the detailed algorithmic construction for the main scheme (denoted IM-DSSEmain)

in IM-DSSE framework in Figure 3.2, Figure 3.3 and Figure 3.4, which consists of nine algorithms

with high-level ideas as follows.

3.4.3.1 Setup Algorithm

The client first executes IM-DSSEmain.Gen Algorithm to generate secret keys (K). Based on the

generated keys K, the client executes IM-DSSEmain.Enc Algorithm to create encrypted data structures

to be outsourced to the cloud. In IM-DSSEmain.Enc Algorithm, it first extracts m′ unique keywords

(w1, . . . , wm′) from n′ files f = {fid1 , . . . , fidn′} with unique IDs (id1, . . . , idn′) (step step 3). It then

constructs an (unencrypted) incidence matrix δ (steps step 4–step 9) by setting each cell value δ[i, j]

to {0, 1}, where i, j are the row and column indexes of keyword and file derived from their hash

table indexes, respectively (steps step 5, step 13). Next, it encrypts each cell δ[i, j] with a unique

〈key-counter〉 pair, where the key (ri) is uniquely derived for each row (i) from K (step step 11),

and the counter (uj) is distinct for each column (j) (step step 13). Finally, it encrypts each file in

f resulting in encrypted files C (steps step 14–step 15). Once C and the encrypted matrix (I) are

constructed, the client sends them to the cloud server along with the file hash table (Tf ).

18



www.manaraa.com

τw ← IM-DSSEmain.SearchToken(K, w): Generate search token τw from keyword w and key K
1: sw ← Gk2 (w), i← Tw(sw)
2: c← Tw[i].ct, ri ← Gk3 (i||c)
3: if c = 1 then
4: τw ← (i, ri)
5: else
6: ri ← Gk3 (i||c− 1) and τw ← (i, ri, ri)

7: Tw[i].ct← c+ 1
8: return τw

(Iw, Cw)← IM-DSSEmain.Search(τw, γ): Given search token τw and encrypted index γ, return sets of file identifiers
Iw and encrypted files Cw ⊆ C matching with τw
1: for j = 1, . . . , n do
2: cj ← Tf [j].ct
3: if (τw = (i, ri) or I[i, j].st = 1) then
4: I′[i, j]← I[i, j]⊕H(ri||j||cj)
5: I[i, j].st← 0
6: else
7: I′[i, j]← I[i, j]⊕H(ri||j||cj)
8: I[i, j]← I′[i, j]⊕H(ri||j||cj)
9: l← 0
10: for each j ∈ {1, . . . , n} satisfying I′[i, j] = 1 do
11: l← l + 1 and yl ← j

12: Iw ← {y1, . . . , yl}
13: γ ← (I, Tf ), Cw ← {(cy1 , y1), . . . , (cyl , yl)}
14: return (Iw, Cw)

Figure 3.3: IM-DSSEmain detailed algorithms.

3.4.3.2 Search Protocol

To search for keyword w, the client executes IM-DSSEmain.SearchToken Algorithm to generate

a search token τw to be sent to the server. The token contains the row index (i) of w and row keys

(ri, r̄i) derived from K, i, and the row counter (u) (steps step 3–step 6). r̄i and ri are the old and

new keys that are used to decrypt the row being searched for the first and latter times, respectively.

Upon receiving τw, the server executes IM-DSSEmain.Search Algorithm to decrypt the row and retrieve

the search result. Specifically, if the cell I[i, j] is previously updated (indicated via the state bit

I[i, j].st), or being searched for the first time (step step 3), it uses the new key (ri) to decrypt the

cell (step step 4) and set the state to be 0 (step step 5). Otherwise, it uses the old key (r̄i) to

decrypt the cell (step step 7) and re-encrypts it with the new key (ri) (step step 8). Finally, the
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server determines column indexes j such that I[i, j] = 1, and returns the corresponding j-labeled

ciphertexts to the client (steps step 9–step 13). The client executes IM-DSSEmain.Dec Algorithm on

each ciphertext to decrypt the files and obtain the search result.

3.4.3.3 Update Protocol

The client executes IM-DSSEmain.AddToken Algorithm to generate an addition token (τf ). It

gets the column index (j) of the file to be added from the file hash table (Tf ) (step step 1), and

then, derives fresh row keys from the keyword hash table (Tw) to be used for encrypting the column

(steps step 2–step 3). It then extracts unique keywords (w1, . . . wt) from the file, and constructs

an (unencrypted) column Ī[∗, j] with values being set to {0, 1} (steps step 4–step 6). Finally, it

encrypts Ī[∗, j] with row keys (steps step 7–step 8) and the file with K (step step 9). The client

sends τf containing the ciphertext and the encrypted column to the server. Upon receiving τf , the

server executes IM-DSSEmain.Add Algorithm to update the column j and its state in I (step step 1).

It increases the column counter (step step 2), and adds the ciphertext to the set of encrypted files

(step step 3).

Similar to the file addition protocol, the client executes IM-DSSEmain.DeleteToken Algorithm

to generate the deletion token, and the server executes IM-DSSEmain.Delete Algorithm to update the

column and delete the file from the set of encrypted files.

Some existing schemes (e.g., [138]) allow file addition/deletion, but do not permit updating

keywords in an existing file directly. This can be easily achieved in our scheme as follows. Assume

the client wants to update file fid by adding (or removing) some keywords, they will prepare a new

column I′[i, j]← bi for 1 ≤ i ≤ m, where bi = 1 if wi is added and bi = 0 otherwise and j ← Tf (sid)
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(τf , c)← IM-DSSEmain.AddToken(K, fid): Given key K and file fid, generate addition token τf and ciphertext c of
fid
1: sid ← Gk2 (id), j ← Tf (sid), Tf [j].ct← Tf [j].ct + 1 and cj ← Tf [j].ct
2: for i = 1, . . . ,m do
3: ri ← Gk3 (i||ci), where ci ← Tw[i].ct

4: Extract (w1, . . . , wt) from fid and set I[∗, j]← 0
5: for i = 1, . . . , t do
6: swi ← Gk2 (wi), xi ← Tw(swi), I[xi, j]← 1

7: for i = 1, . . . ,m do
8: I′[i, j]← I[i, j]⊕H(ri||j||cj)
9: c← (c′, j), where c′ ← Enck1fid, j||cj
10: return (τf , c) where τf ← (I′, j)

(γ′, C′)← IM-DSSEmain.Add(γ, C, c, τf ): Add addition token τf and ciphertext c to encrypted index γ and cipher-
text set C, resp.
1: Set I[i, j]← I′[i, j] and I[i, j].st← 1, for 1 ≤ i ≤ m
2: Tf [j].ct ← Tf [j].ct + 1
3: return (γ′, C′), where γ′ ← (I, Tf ) and C′ ← C ∪ {(c, j)}

τ ′f ← IM-DSSEmain.DeleteToken(K, f): Given key K and deleted file fid, generate deletion token τ ′f
1: Execute steps step 1–step 3 of IM-DSSEmain.AddToken Algorithm to produce (j, cj , 〈r1, . . . , rm〉) and increase
Tf [j].ct to 1

2: for i = 1, . . . ,m do
3: I′[i, j]← H(ri||j||cj)
4: return τ ′f , where τ

′
f ← (I′, j)

(γ′, C′)← IM-DSSEmain.Delete(γ, C, τ ′f ): Update deletion token τ ′f to encrypted index γ′ and delete a file from
ciphertext set C′
1: Set I[i, j]← I′[i, j] and I[i, j].st← 1, for 1 ≤ i ≤ m
2: Tf [j].ct ← Tf [j].ct + 1
3: return (γ′, C′), where γ′ ← (I, Tf ), C′ ← C \ {(c, j)}

Figure 3.4: IM-DSSEmain detailed algorithms.

with sid ← Gk2 (id) as in IM-DSSEmain.AddToken algorithm (steps step 4-step 6). The rest of the

algorithm remains the same.

3.4.3.4 Cost Analysis

For keyword search, IM-DSSEmain incurs n invocations of hash function H and n XOR

operations. Although IM-DSSEmain has a linear search complexity, which is asymptotically less

efficient than other DSSE schemes (e.g., [26, 35]), we show in our experiments that, this impact is

insignificant in practice for personal cloud usage with moderate database size where all optimizations
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are taken into account. Since IM-DSSEmain is fully parallelizable, the search and update computation

times can be reduced to n/p and m/p, respectively, where p is the number of processors. Therefore,

cryptographic operations in IM-DSSEmain only contribute a small portion to the overall end-to-end

search delay, which is mostly dominated by the network communication latency between client and

server. Notice that all sub-linear DSSE schemes [35, 165] are less secure and sometimes incur more

costly updates than IM-DSSEmain. For file update, IM-DSSEmain incurs m invocations of H and m

XOR operations along with m bits of transmission.

IM-DSSEmain costs
(

2m · n+ n · (κ+ |c|)
)
bits of storage at the server for encrypted index I

and file hash table Tf . At the client side, IM-DSSEmain requires (n+m)(κ+ |c|) + 3κ bits for two

hash tables Tw, Tf and secret key K.

3.4.4 IM-DSSE Extended Schemes

We present extended schemes derived from IM-DSSEmain presented above that IM-DSSE frame-

work also supports.

3.4.4.1 IM-DSSEI: Minimized Search Latency

In IM-DSSEmain, we encrypt each cell of I with a unique key-counter pair, which requires

n invocations of H during keyword search. This might not be ideal for some applications that

require extremely prompt response. Hence, we introduce an extended scheme called IM-DSSEI, which

aims at achieving a very low search latency with the cost of increasing update delay. Specifically,

instead of encrypting the index bit-by-bit as in IM-DSSEmain scheme, IM-DSSEI leverages b-bit block

cipher encryption to encrypt b successive cells with the same key-counter pair. This is achieved by

interpreting columns of I as D = dnb e blocks, each being IND-CPA encrypted using AES-CTR mode
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(τf , c)← IM-DSSEI.AddToken(K, fid): Generate addition token τf and ciphertext c of fid
1: sid ← Gk2 (id), j ← Tf (sid), l← b j−1

b c, cl ← u[l]
2: a← (l · b) + 1, a′ ← b · (l + 1)
3: Extract (w1, . . . , wt) from fid
4: for i = 1, . . . , t do
5: swi ← Gk2 (wi), xi ← Tw(swi)

6: Get from server (I[∗, a . . . a′]) and I[∗, l].st
7: for i = 1, . . . ,m do
8: ci ← Tw[i].ct
9: if (ci > 1 and I[i, l].st = 0) then
10: ci ← ci − 1

11: ri ← Gk3 (i||ci)†
12: I′[i, a . . . , a′]← DecriI[i, a . . . a′], l||cl
13: I′[i, j]← 0 for 1 ≤ i ≤ m and I′[xi, j]← 1 for 1 ≤ i ≤ t
14: u[l]← u[l] + 1, cl ← u[l]
15: for i = 1, . . . ,m do
16: if (ci > 1 and I[i, l].st = 0) then
17: ri ← Gk3 (i||ci + 1)

18: I[i, a . . . a′]← EncriI
′[i, a . . . a′], l||cl

19: Tf [j].ct← Tf [j].ct + 1 and u′j ← Tf [j].ct
20: c← (c′, j) where c′ ← Enck1fid, j||u′j
21: return (τf , c) where τf ← (I, j)

(γ′, C′)← IM-DSSEI.Add(γ, C, c, τf ): Add addition token τf and ciphertext C to encrypted index γ and
ciphertext set C, resp.
1: l← b j−1

b c, a← (l · b) + 1, a′ ← b(l + 1)

2: I[i, j′]← I[i, j′], for 1 ≤ i ≤ m and a ≤ j′ ≤ a′
3: u[l]← u[l] + 1 and I[∗, l].st← 1
4: return (γ′, C′), where γ′ ← (I, Tf ) and C′ ← C ∪ {c}

† G should generate a suitable key for E (e.g., 128-bit key for AES-CTR)

Figure 3.5: IM-DSSEI detailed algorithms.

with block cipher size b. The counter will be stored via a block counter array (denoted as u) instead

of Tf [·].c as in the main scheme. The update state is maintained for each block rather than each

cell of I[i, j]. Hence, I is decomposed into two matrices with different sizes: I.v ∈ {0, 1}m×n and

I.st ∈ {0, 1}m×D.

IM-DSSEI requires some algorithmic modifications from the main scheme. Figure 3.5 presents

IM-DSSEI.AddToken Algorithm and IM-DSSEI.Add Algorithm for file addition procedure in IM-DSSEI

(modifications for file deletion follow the same principle). Specifically, we substitute encryption and
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decryption using random oracle H(ri||j||uj) with block cipher encryption Encri·, l||u′l and Decri·, l||u′l,

respectively, where ul is a block counter (see steps step 12, step 20). Since I is encrypted by blocks,

to update a column during the file update, the client needs to retrieve a whole block and its state

from the server first (step step 6). The client then decrypts the block (steps step 7–step 12), updates

a column within it (step step 13), re-encrypts the entire block (steps step 15–step 18), and finally

sends the encrypted block to the server for replacement. So, the reduction of search cost increases

the cost of communication overhead for the update as a trade-off.

The modifications for IM-DSSEI.Gen, IM-DSSEI.Enc, IM-DSSEI.SearchToken and IM-DSSEI.Search

algorithms are straightforward. Only the underlying encryption is changed from random oracle to

block cipher (e.g., AES-CTR) as exemplified in IM-DSSEI.AddToken Algorithm. Hence, we will not

present those algorithms in detail.

For keyword search, IM-DSSEI requires n/b invocations of E , which is theoretically b times

faster than the main scheme. Given the CTR mode, the search time can be reduced to n/(b ·p), where

p is the number of processors. For file update, IM-DSSEI requires transmission of (2b+ 1) ·m bits

along with decryption and encryption operations at the client side, compared with m non-interactive

transmission and encryption-only in the main scheme. Thus, the keyword search speed in IM-DSSEI

is increased by a factor of b (e.g., b = 128) with the cost of transmitting (2b+ 1) ·m bits in the file

update.

IM-DSSEI reduces the server storage to
(
n·|c|+m·n·(b+1)

b

)
bits. The client storage remains the

same as in IM-DSSEmain.
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(Iw, Cw)← Search(K, w): Given keyword w and key K, return sets of file identifiers Iw and encrypted
files Cw ⊆ C matching with w
1: swi ← Gk2 (w), i← Tw(swi), ri ← Gk3 (i), l← 0
2: Fetch the i-th row data I[i, ∗] from server
3: for j = 1, . . . , n do
4: cj ← Tf [j].ct
5: I′[i, j]← I[i, j]⊕H(ri||j||cj)
6: for each j ∈ {1, . . . , n} satisfying I′[i, j] = 1 do
7: l← l + 1 and yl ← j

8: Iw ← {y1, . . . , yl}
9: Send Iw to server and receive Cw = {(cy1 , y1), . . . , (cyl , yl)}

10: fi ← DecK(cyi) for 1 ≤ i ≤ l
11: return (Iw, fw), where fw ← {f1, . . . , fl}

Figure 3.6: IM-DSSEII detailed algorithms.

3.4.4.2 IM-DSSEII: Achieving Cloud SaaS with Backward Privacy

All DSSE schemes introduced so far require the server to perform some computation (i.e.,

encryption/decryption) during keyword search, which might not be fully compatible with typical

storage-only clouds (e.g., Dropbox, Google Drive, Amazon S3). Hence, we propose an extended

scheme derived from IM-DSSEmain called IM-DSSEII, where all computations are performed at the client

side while the server does nothing rather than serving as a storage unit. This simple trick makes

IM-DSSEII not only compatible with with storage-only clouds, but also more importantly, achieve the

backward-privacy property. This is because the server now cannot decrypt any part of encrypted

index to keep track of historical update operations. Moreover, IM-DSSEII also reduces the storage at

both client and server sides by eliminating the state matrix and keyword counters that are needed

in IM-DSSEmain and IM-DSSEI to perform correct decryption and achieve forward-privacy during the

search and update, respectively.

We present the keyword search procedure of IM-DSSEII in Figure 3.6, which combines

SearchToken and Search algorithms in DSSE. To search for keyword w, the client sends to the

server the w’s row index (i) and receives the corresponding row I[i, ∗] (step step 2). The client
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decrypts I[i, ∗], extracts column indexes j such that I[i, j] = 1. Since the client computes everything,

it is not required to derive new row keys for forward-privacy and therefore, state matrix I[∗, ∗].st as

well as file hash table Tf at the server and keyword counters Tw.ct at the client are not needed in

IM-DSSEII (see steps step 3–step 5 for example). The client then fetches and decrypts encrypted files

indexed at j to obtain the search result (step step 9).

IM-DSSEII.Gen is identical to IM-DSSEmain.Gen Algorithm. IM-DSSEII.Enc, IM-DSSEII.Add,

IM-DSSEII.AddToken, IM-DSSEII.Delete, IM-DSSEII.DeleteToken can be easily derived from their version

in the main scheme (IM-DSSEmain) by (1) substituting row key generation ri ← Gk3 (i, ci) with

ri ← Gk3 (i), (2) omitting all keyword counters ci, block states I[∗, ∗].st, (3) and removing Tf from

the server storage. Due to repetition, we will not present them in detail.

The computation cost of IM-DSSEII is identical to IM-DSSEmain (i.e., n and m invocations of

H for search and update resp.). IM-DSSEII requires two-round communication with n bits being

transmitted during keyword search.

IM-DSSEII reduces the client and server storage costs to n(κ+ |c|) +m · κ+ 3κ and m · n bits,

respectively.

3.4.4.3 IM-DSSEI+II: Efficient Search with Backward Privacy

Our IM-DSSE framework also supports IM-DSSEI+II, an extended DSSE scheme which is the

combination of IM-DSSEI and IM-DSSEII schemes. In IM-DSSEI+II, the incidence matrix I is encrypted

with b-bit block cipher encryption, and the decryption is performed by the client during search. Since

IM-DSSEI+II inherits all properties of IM-DSSEI and IM-DSSEII schemes, IM-DSSEI+II is highly desirable

for cloud SaaS infrastructure that requires a very low search latency and backward-privacy with the

costs of more delayed update and an extra communication round during search.
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3.4.5 Security Analysis

In this section, we analyze the security and update privacy of all the DSSE schemes provided

in our IM-DSSE framework. Most known efficient SSE schemes (e.g., [35, 138, 165]) reveal the search

and file-access patterns defined as follows.

• Given search query w at time t, the search pattern P(δ,Query, t) is a binary vector of length t

with a 1 at location i if the search time i ≤ t was for w, and 0 otherwise. The search pattern

indicates whether the same keyword has been searched in the past or not.

• Given search query w at time t, the file-access pattern ∆(δ, f, w, t) is identifiers Iw of files f

containing w.

We consider leakage functions in the line of [108] that captures dynamic file addition/deletion

in its security model, but we leak much less information compared to [108].

Definition 4 (Leakage Function). We define leakage functions (L1,L2,L3) as follows:

1. (m,n, id, 〈|fid1 |, . . . , |fidn |〉)← L1(δ, f): Given the index δ and the set of files f (including their

identifiers), L1 outputs the maximum number of keywords m, the maximum number of files n,

the identifiers id = {id1, . . . , idn} of f and the size of file |fidj | for 1 ≤ j ≤ n (which also implies

the size of its corresponding ciphertext |cidj |).

2. (P(δ,Query, t),∆(δ, f, w, t))← L2(δ, f, w, t): Given the index δ, the set of files f and a keyword

w for the search operation at time t, it outputs the search pattern P and file-access pattern ∆.

3. |fid|← L3(δ, f, id, t, op): Given the index δ, the set of files f, a file identifier id, and the update

type op ∈ {〈Add, |fid|〉,Delete} at time t, it outputs the size of updated file fid (which also

implies the size of its corresponding ciphertext |cid|).
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Remark 1. In Definition 1, we adopt the dynamic CKA2-security notion in [108] that captures the

file addition and deletion by simulating corresponding tokens τf and τ ′f , resp.

The security of IM-DSSE can be stated as follows.

Theorem 1. If E .Enc is IND-CPA secure, G is PRF and H is a RO then IM-DSSE is (L1,L2,L3)-secure

in ROM by Definition 1 (CKA-2 security with update capacity).

Proof. We prove the IND-CKA2 for IM-DSSEmain proposed in §3.4.3. The proof for extended schemes

in §3.4.4 can be easily derived from this proof (see Remark 2 below for argument) and therefore, we

will not repeat it.

To begin with, we construct a simulator S that interacts with an adversary A in an execution

of an IdealA,S(κ) experiment as described in Definition 1. In this experiment, S maintains lists LR,

LK and LH to keep track of query results, states and history information, respectively. Initially,

all lists are set to empty. LR is a list of key-value pairs and is used to keep track of RO(·) queries.

We denote value ← LR(key) and ⊥ ← LR(key) if key does not exist in LR. LK is to keep track

of random values generated during the simulation and it is similar to LR. LH is to keep track of

search and update queries, S’s replies to those queries and their leakage output from (L1,L2). S

executes the simulation as follows.

1. Handle RO(·) Queries: b← RO (x) takes an input x and returns a bit b as output. Given x,

if ⊥ = LR(x) set b $← {0, 1}, insert (x, b) into LR and return b as the output. Else, return

b← LR(x) as the output.

2. Simulate (γ, C): Given (m,n, 〈id1, . . . , idn′〉, 〈|c1|, . . . , |cn′ |〉) ← L1(δ, f), S simulates (γ, C) as

follows.
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(a) (sidj , k)
$← {0, 1}κ, yj ← Tf (sidj ), insert (idj , sidj , yj) into LH and cyj ← Enck{0}|cidj | for

1 ≤ j ≤ n′.

(b) For j = 1, . . . , n and i = 1, . . . ,m

i. Tw[i].ct← 1 and Tf [j].ct← 1.

ii. zi,j
$← {0, 1}κ, I[i, j]← RO (zi,j) and I[i, j].st← 0.

(c) Output (γ, C), where γ ← (I, Tf ) and C ← {〈ci, yi〉}n′i=1

C has the correct size and distribution, since L1 leaks 〈|cid1 |, . . . , |cidn′ |〉 and E .Enc(·) is a

IND-CPA secure scheme, respectively. I and Tf have the correct size since L1 leaks (m,n).

Each I[i, j] for 1 ≤ j ≤ n and 1 ≤ i ≤ m has random uniform distribution, since RO(·) is

invoked with random value zi,j . Tf has the correct distribution, since each sidj has random

uniform distribution, for 1 ≤ j ≤ n′. Hence, A does not abort due to A’s simulation of (γ, C).

The probability that A queries RO(·) on any zi,j before S provides I to A is negligible (i.e.,

1
2κ ). Hence, S also does not abort.

3. Simulate τw: Simulator S receives a search query for an arbitrary keyword w on time t. S is

given (P(δ,Query, t), ∆(δ, f, w, t)) ← L2(δ, f, w, t). S adds these to LH. S then simulates τw

and updates lists (LR,LK) as follows.

(a) If w is in LH, then fetch sw. Else, sw
$← {0, 1}κ, i ← Tw(swi), ci ← Tw[i].ct, insert

(w,L1(δ, f), sw) into LH.

(b) If ⊥ = LK(i||ci), then ri $← {0, 1}κ and insert (ri, i, ci) into LK. Else, ri ← LK(i||ci).

(c) If ci > 1, then ri ← LK(i||ci − 1), τw ← (i, ri, ri). Else, τw ← (i, ri).

(d) Tw[i].ct← ci + 1.
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(e) Given L2(δ, f, w, t), S knows identifiers Iw = {y1, . . . , yl}. Set I′[i, y]← 1 for each y ∈ Iw

and the rest of the elements as I′[i, j]← 0 for each j ∈ {{1, . . . , n} \ Iw}.

(f) If ((τw = (i, ri)∨I[i, j].st) = 1), then V[i, j]← I[i, j]′⊕I[i, j] and insert tuple (ri||j||cj ,V[i, j])

into LR, where cj ← Tf [j].ct for 1 ≤ j ≤ n.

(g) I[i, j].st← 0 for 1 ≤ j ≤ n.

(h) I[i, j]← I′[i, j]⊕ RO (ri||j||cj), where cj ← Tf [j].ct for 1 ≤ j ≤ n.

(i) Output τw and insert (w, τw) into LH.

Given any ∆(δ, f, w, t), S simulates the output of RO(·) such that τw always produces the

correct search result for Iw ← Searchτw, γ. S needs to simulate the output of RO(·) for two

conditions: (i) The first search of w (i.e., τw
?
= (i, ri)), since S did not know δ during the

simulation of (γ, C). (ii) If any file fid containing w has been updated after the last search on w

(i.e., I[i, j].st
?
= 1), since S does not know the update content. S sets the output of RO(·) for

those cases by inserting tuple (ri||j||cj ,V[i, j]) into LR. In other cases, S just invokes RO(·)

with (ri||j||cj), which consistently returns the previously inserted bit from LR.

During the first search on w, each RO(·) outputs V[i, j] = RO (ri||j|cj) that has the correct

distribution, since I[i, ∗] of γ has random uniform distribution (see II-Correctness and Indistin-

guishability argument). Let J = {j1, . . . , jl} be the set of indexes of files containing w, which

are updated after the last search on w. If w is searched again after being updated, then each

RO(·)’s output V[i, j] = RO (ri||j|cj) has the correct distribution, since τf ← (I′, j) for indexes

j ∈ J has random uniform distribution. Given that S’s τw always produces correct Iw for given

∆(δ, f, w, t), and relevant values and RO(·) outputs have the correct distribution, A does not

abort during the simulation due to S’s search token. The probability that A queries RO(·) on
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any (ri||j|cj) before querying S on τw is negligible (i.e., 1
2κ ) and, therefore, S does not abort

due to A’s search query.

4. Simulate (τf ,τ ′f ): S receives an update request op ∈ {〈Add, |c|〉,Delete} for an arbitrary file

having id at time t. Given |cid|← L3(δ, f, id, t, op), S simulates update tokens (τf , τ
′
f ) as follows.

(a) If id is in LH, then fetch (id, sid, j). Else set sid
$← {0, 1}κ, j ← Tf (sid) and insert (id, sid, j)

into LH.

(b) Tf [j].ct← Tf [j].ct + 1, cj ← Tf [j].ct.

(c) If ⊥ = LK(i||ci), then ri $← {0, 1}κ and insert (ri, i, ci) into LK, where ci ← Tw[i].ct for

1 ≤ i ≤ m.

(d) I′[i, j]← RO (zi), where zi
$← {0, 1}2κ for 1 ≤ i ≤ m.

(e) Set I[i, j]← I′[i, j] and I[i, j].st← 1 for 1 ≤ i ≤ m.

(f) If op = 〈Add, |c|〉, then simulate cj ← Enck{0}|c| add cj into C, set τf ← (I′, j) and output

τf . Else, set τ ′f ← (I′, j), remove cj from C and output τ ′f .

Given access pattern (τf , τ
′
f ) for a file fid, A checks the correctness of update by searching all

keywords w = {wi1 , . . . , wil} in fid. Since S is given access pattern ∆(δ, f, w, t) for a search

query (which captures the last update before the search), the search operation always produces

a correct result after an update as analyzed above. Hence, S’s update tokens are correct and

consistent.

It remains to show that (τf , τ
′
f ) have the correct probability distribution. In the real algorithm,

the counter cj is increased for each update. If fid is updated after the keyword w at row i

is searched, a new ri is generated for w as simulated (ri remains the same for consecutive
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updates but cj increases). Hence, the real algorithm invokes H(.) with a different (ri||j||cj) for

1 ≤ i ≤ m. S simulates this step by invoking RO(·) with zi and I′[i, j]← RO (zi), for 1 ≤ i ≤ m.

(τf , τ
′
f ) have random uniform distribution since I′ has random uniform distribution and update

operations are correct and consistent as shown above. cj also has the correct distribution since

E .Enc(·) is an IND-CPA encryption. Hence, A does not abort during the simulation due to S’s

update tokens. The probability that A queries RO(·) on any zi prior querying S on (τf , τ
′
f ) is

negligible (i.e., 1
22·κ ) and, therefore, S does not abort due to A’s update query.

5. Final Indistinguishability Argument: (swi , sidj , ri) for 1 ≤ i ≤ m and 1 ≤ j ≤ n are indistin-

guishable from real tokens and keys since they are generated by PRFs that are indistinguishable

from random functions. E .Enc(·) is a IND-CPA scheme, the answers returned by S to A for

RO(·) queries are consistent and appropriately distributed, and all query replies of S to A

during the simulation are correct and indistinguishable as discussed above. Hence, for all PPT

adversaries, the outputs of RealA(κ) and IdealA,S(κ) experiment are:

|Pr[RealA(κ) = 1]− Pr[IdealA,S(κ) = 1]|≤ neg(κ),

where neg(·) is a negligible function.

We argue the security of extended schemes as follows.

Remark 2. IM-DSSEI, IM-DSSEII and IM-DSSEI+II are secure by Definition 1, and their proofs can be

easily derived from the security analysis of IM-DSSEmain with the intuition as follows.

IM-DSSEI only differs from IM-DSSEmain in terms of b-bit encryption, compared with 1-bit

encryption. This modification does not impact the IND-CKA2 security of IM-DSSEI over IM-DSSEmain.
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Given that we use ROs and an IND-CPA encryption scheme (e.g., AES with CTR mode), the security

of IM-DSSEI is not affected in our model, and in particular, there is no additional leakage. The price

that is paid for this performance improvement is that the scheme becomes interactive. Since the block

data exchanged between client and server are encrypted with an IND-CPA encryption scheme, there

is no additional leakage due to this operation.

IM-DSSEII only differs from IM-DSSEmain in terms of where the decryption during keyword

search takes place. Performing decryption at the client (instead of at the server) does not impact the

IND-CKA2 security of IM-DSSEII over IM-DSSEmain. Given that we, respectively, use ROs and PRF

for H and G as in IM-DSSEmain, the security of IM-DSSEII remains the same.

IM-DSSEI+II is merely the combination of IM-DSSEI and IM-DSSEII, where block cipher encryp-

tion and client decryption during search are both implemented. As analyzed, each of these strategies

does not impact the security and therefore, IM-DSSEI+II still preserve the IND-CKA2 security.

The leakage definition and formal security model imply various levels of privacy for different

DSSE schemes. We summarize some important privacy notions based on the various leakage

characteristics discussed in [165] as follows.

• Size pattern: The number of actual keyword-file pairs.

• Forward privacy: A search on a keyword w does not leak the IDs of files being updated in the

future and having w.

• Backward privacy: A search on a keyword w does not leak all historical update operations (e.g.,

addition /deletion) on the identifiers of files having this keyword.
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Since keyword-file relationships are represented by an encrypted incidence matrix, IM-DSSE framework

hides the size pattern (i.e., number of ‘1’ in I), so that it is size-oblivious.

Corollary 1. IM-DSSE framework offers forward-privacy.

Proof. In IM-DSSE framework, the update involves reconstructing a new column/block of encrypted

index I. The column/block is always encrypted with row keys that have never been revealed to the

server. This is achieved in IM-DSSEmain and IM-DSSEI schemes by increasing the row counter after

each keyword search operation so that fresh row keys will be used for subsequent update operations.

In IM-DSSEII scheme, since all cryptographic operations are performed at the client side where no

keys are revealed to the server, it is unable for the server to infer any information in the update, given

that the encryption scheme is IND-CPA secure. These properties enable our IM-DSSE framework to

achieve forward privacy.

Corollary 2. IM-DSSEII and IM-DSSEI+II achieve backward-privacy.

Proof. In most DSSE schemes, the client sends a key that allows the server to decrypt a small part

of the encrypted index during keyword search. The server can use this key to backtrack historical

update operations on this part and therefore, compromise the backward-privacy. In IM-DSSEII and

IM-DSSEI+II schemes, instead of sending the key to the server, the client requests this part and decrypts

it locally. This prevents the server from learning information about historical update operations on

the encrypted index and therefore, allows both schemes to achieve backward-privacy.

3.4.6 Experimental Evaluation

In this section, we study the performance of our IM-DSSE framework in real-life networking

and system settings. We present a detailed cost breakdown analysis to fully assess the criteria that
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constitute the performance overhead of our constructions. Given that such analysis is generally

missing in the literature, this is the main focus of our performance evaluation. Finally, we give a

brief asymptotic comparison of our framework with several DSSE schemes in the literature.

3.4.6.1 Implementation

We implemented our framework using C/C++. For cryptographic primitives, we used

libtomcrypt library [53]. We modified low level routines to call AES hardware acceleration instructions

(via Intel AES-NI library [80]) if they are supported by the underlying hardware platform. We used AES-

128 Cipher-based Message Authentication Code (CMAC) for hash function. Our random oracles were

all implemented via 128-bit AES CMAC. For hash tables, we employed Google’s C++ sparse hash map

library [4] with the hash function being implemented by the CMAC-based random oracles truncated

to 80 bits. We implemented the IND-CPA encryption E using AES with CTR mode. For network

communication, we used ZeroMQ library [3]. IM-DSSE framework contains the full implementation of

all schemes including IM-DSSEmain, IM-DSSEI, IM-DSSEII and IM-DSSEI+II, which can be freely accessed

via our following Github repository [85]: https://github.com/thanghoang/IM-DSSE/.

Our implementation supports the encrypted index stored on either memory or local disk.

Therefore, our schemes can be directly deployed in either storage-as-a-service (e.g., Amazon S3) or

infrastructure-as-a-service clouds (e.g., Amazon EC2). For this experimental evaluation, we selected

block cipher size b = 128 for IM-DSSEI and IM-DSSEI+II schemes.

3.4.6.2 Configurations and Methodology

We used subsets of the Enron email dataset [2], ranging from 50,000 to 250,000 files with

240,000–940,000 unique keywords to evaluate the performance of our schemes with different encrypted
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Figure 3.7: Latency of IM-DSSE with fast network.

index sizes. These selected sizes surpass the experiments in [109] by three orders of magnitude and

are comparable to the experiments in [165].

We conducted the experiment with two settings: (i) We used HP Z230 Desktop as the client

and built the server using Amazon EC2 with m4.4xlarge instance type. The desktop was equipped

with Intel Xeon CPU E3-1231v3 @ 3.40GHz, 16 GB RAM, 256 GB SSD and CentOS 7.2 was

installed. The server was installed with Ubuntu 14.04 and equipped with 16vCPUs @2.4 GHz Intel

Xeon E5-2676v3, 64 GB RAM and 500 GB SSD hard drive. (ii) We selected LG G4 mobile phone to

be the client machine running Android OS, v5.1.1 (Lollipop) and was equipped with Qualcomm

Snapdragon 808 64-bit Hexa-core CPU @1.8 GHz, 3GB RAM and 32 GB internal storage. Notice

that AES-NI library cannot be used to accelerate cryptographic operations on this mobile device due

to its incompatible CPU, which affects the performance of our schemes in the mobile environment as

will be shown in the following section.

We disabled the slow-start TCP algorithm and maximized initial congestion window parame-

ters in Linux (i.e., 65535 bytes) (see [57] for more insights) to reduce the network impact during the

initial phase in case the scheme requires low amount of data to be transmitted.
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Figure 3.8: IM-DSSE delay with moderate network.

3.4.6.3 Overall Results.

Figure 3.7 presents the overall performance in terms of end-to-end cryptographic delay of all

the schemes in IM-DSSE framework. In this experiment, we located client and server in the same

geographical region, resulting in a network latency of 11.2 ms and a throughput of 264 Mbps. We

refer to this configuration as a fast network setting. Notice that we only measured the delay due to

accessing the encrypted index I, and omitted the time to access encrypted files (i.e., set C) as it

is identical for all searchable encryption and non-searchable encryption schemes. For instance, in

keyword search, we measured the delay of IM-DSSEmain scheme and IM-DSSEI scheme by the time the

client sends the request and the server finishes decrypting an entire row of the encrypted index and

gets cells whose value is 1. The IM-DSSEmain scheme and its extended versions took less than 100

ms to perform a keyword search, while it took less than 2 seconds to update a file. The cost per

keyword search depends linearly on the maximum number of files in the database (i.e., O(n)) and

yet it is highly practical even for very large numbers of keyword-file pairs (i.e., more than 1011 pairs).

Indeed, we confirm that the search operation in IM-DSSE is very fast and most of the overhead is due

to network communication delay as it will be later analyzed in this section. Note that the costs for
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Figure 3.9: IM-DSSE delay on SSD, and (a,b) fast and (c,d) moderate networks.

adding and deleting files (updates) over the encrypted index are highly similar since their procedure

is almost identical.

The keyword search operation delay of IM-DSSEmain is higher than that of extended schemes

and the difference increases as the size of the encrypted index increases due to two reasons: First,

the encrypted index I in IM-DSSEmain scheme is bit-by-bit encrypted compared with 128-bit block

encryption in IM-DSSEI. Hence, the server needs to derive more AES keys than in IM-DSSEI to decrypt

a whole row. Thus, the gap between IM-DSSEmain and IM-DSSEI represents the server computation

cost required for this key derivation and encryption. Second, the processes in IM-DSSEmain scheme are

performed subsequently, in which the server needs to receive some information sent from the client

first before being able to derive keys to decrypt a row. Such processes in IM-DSSEI and IM-DSSEII

can be parallelized, where the client generates the AES-CTR keys while receiving a row of data

transmitted from the server. We can see that the delay is similar between IM-DSSEI and IM-DSSEII and

IM-DSSEI+II. This indicates that using 128-bit encryption significantly reduces the server computation

cost to a point, where it becomes negligible as being later shown.

Considering the file update operation, our IM-DSSEmain and IM-DSSEII schemes leverage 1-bit

encryption and, therefore, it does not require to transfer a 128-bit block to the client first prior

to updating the column as in IM-DSSEI and IM-DSSEI+II schemes. Hence, they are faster and less
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Figure 3.10: Detailed costs of IM-DSSE with moderate network and SSD storage.

affected by the network latency than IM-DSSEI and IM-DSSEI+II. So, the gap between such schemes

reflects the data download delays, which will be significantly higher on slower networks as shown in

the next experiment. Update in IM-DSSEI+II is considerably faster than in IM-DSSEI because it allows

for parallelization, in which the client can pre-compute AES-CTR keys while receiving data from

the server. In IM-DSSEI, such keys cannot be pre-computed as they need some information from the

server beforehand (i.e., state data I[∗, j].st).

3.4.6.4 The Impact of Network Quality.

The previous experiments were conducted on a high-speed network, which might not be

widely available in practice. Hence, we additionally investigated how our schemes perform when the

network speed is degraded. We setup the server to be geographically located distant from the client

machine, resulting in the network latency and throughput to be 67.5 ms and 46 Mbps, respectively.

Figure 3.8 shows the end-to-end cryptographic delay of our schemes in this moderate network setting.

Due to the high network latency, search operation of each scheme is slower than that of fast network

by 230ms. The impact of the network latency is clearly shown in the update operation as reflected

in Figure 3.8b. The delays of IM-DSSEI, IM-DSSEI+II are significantly higher than those of IM-DSSEmain
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Figure 3.11: IM-DSSE delay on mobile, RAM and (a,b) fast and (c,d) moderate networks.
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Figure 3.12: IM-DSSE delay on mobile, SSD and (a,b) fast and (c,d) moderate networks.
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Figure 3.13: Detailed costs of IM-DSSE on mobile with moderate network and SSD storage.

and IM-DSSEII. As explained previously, this gap actually reflects the download delay incurred by

such schemes.

3.4.6.5 The Impact of I/O Access

Another important performance factor for DSSE is the encrypted index storage access delay.

Hence, we investigated the impact of the encrypted index storage location on the performance of
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our schemes. Clearly, the ideal case is to store all server-side data on RAM to minimize the delay

introduced by storage media access as shown in previous experiments. However, deploying a cloud

server with a very large amount of RAM capacity can be very costly. Thus, in addition to the

RAM-stored results shown previously, we stored the encrypted index on the secondary storage unit

(i.e., SSD drive), and then measured how overall delays of our scheme were impacted by this setting.

Figure 3.9 presents the results with two aforementioned network quality environments (i.e., fast and

moderate speeds). In IM-DSSEmain and IM-DSSEI schemes, the disk I/O access is incurred by loading

a part of the encrypted index including value I.v and state I.st . It is clear that the disk I/O access

time incurred an insignificant latency to the overall delay in terms of keyword search operation

as shown in Figure 3.9a and Figure 3.9d, since our schemes achieve perfect locality as defined by

Cash et al. [37]. However, in the file update operation, the delay in IM-DSSE framework was 1–4

seconds more, compared with RAM-based storage. That is because we stored all cells in each row of

the encrypted matrix I in contiguous memory blocks. Therefore, keyword search invokes accessing

subsequent memory blocks while update operation results in accessing scattered blocks which incurs

much higher disk I/O access time. Due to the incidence matrix data structure and this storage

strategy, our search operation was not affected as much by disk I/O access time as other non-local

DSSE schemes (e.g., [35, 36, 108]), which require accessing random memory blocks for security.

3.4.6.6 Cost Breakdown.

We dissected the overall cost of our schemes previously presented in Figure 3.7, Figure 3.8

and Figure 3.9 to investigate which factors contribute a significant amount to the total delay of each

scheme. For analysis, we selected the cost of our schemes when performing on the largest encrypted

index size being experimented (i.e., 2.36× 1011) with moderate network speed, where the encrypted
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index is stored on an SSD drive. Figure 3.10 presents the major factors that contribute to the total

delay of our schemes during keyword search and file update operations.

Considering the search operation, it is clear that data transmission occupied the largest

amount of delay among all schemes. In our IM-DSSEmain and IM-DSSEI schemes, most of the compu-

tations were performed by the server wherein cryptographic operations were accelerated by AES-NI

so that they only took a small portion of the total, especially in IM-DSSEI scheme. Meanwhile, the

client only performed simple computations such as search token generation so that its cost was

negligible. In IM-DSSEII and IM-DSSEI+II schemes, encrypted data were decrypted at the client side,

while the server did nothing but transmission. Therefore, the client computation cost took a small

portion of the total delay and the server’s cost was negligible. However, as indicated in §3.4.4, the

client computation and data transmission in IM-DSSEII and IM-DSSEI+II are fully parallelizable where

their partially parallel costs are indicated by their overlapping area in Figure 3.10a. Hence, we

can infer that client computation was actually dominated by data transmission and, therefore, the

computation cost did not affect the total delay of the schemes. As explained above, we stored the

encrypted matrix on disk with row-friendly strategy so that the disk I/O access time due to keyword

search was insignificant, which contributed less than 3% to the total delay.

In contrast, it is clear that disk I/O access time occupied a considerable proportion of the

overall delay of the update operation, especially in the IM-DSSEmain and IM-DSSEII schemes due to

non-contiguous memory access. Data transmission was the second major factor contributing to the

total delay. As the server did not perform any expensive computations, its cost was negligible in all

schemes. The client performed cryptographic operations which were accelerated by AES-NI library

so that it only contributed less than 7% to the overall cost. Additionally, the client computation
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was mostly parallelized with the data transmission and the server’s operations in IM-DSSEII and

IM-DSSEI+II schemes so that it can be considered not to significantly impact the total delay.

We evaluated our schemes’ performance when deployed on a mobile device with limited

computational resources. Similar to the desktop experiments, we tested on fast and moderate

network by geographically locating the server close and distant from the mobile, respectively. The

phone was connected to a local WiFi which, in turn, allowed the establishment of the connection to

the server via a wireless network resulting in the latency and throughput of fast network case to

be 18.8 ms, 136 Mbps while those of moderate case were 76.3 ms and 44 Mbps, resp. Figure 3.11

and Figure 3.12 present the benchmark results with aforementioned network settings when the

data in the server were stored on RAM and SSD, respectively. In the mobile environment, the

IM-DSSEII scheme performed considerably slower than others in terms of keyword search. That is

because, in this scheme, a number of cryptographic operations (i.e., O(n)) were performed by the

mobile device. Moreover, these operations were not accelerated by AES-NI library as in our Desktop

machine because the mobile CPU did not have special crypto-accelerated instructions. Considering

the keyword search performance of IM-DSSEII in the moderate network setting (i.e., Figure 3.11c

and Figure 3.12c), we can see that its delay significantly increased when the size of encrypted

index exceeded 1011 keyword-file pairs. This is because starting from this size of the encrypted

index, the client computation began to dominate the data transmission cost. The update delays

of our schemes, especially the IM-DSSEmain and IM-DSSEII schemes, were substantial in the mobile

environment because the mobile platform had to perform intensive cryptographic operations.

Figure 3.13 shows the decomposition of the total end-to-end delay of our schemes in the

out-of-state network setting when the server data were stored on an SSD drive. For the search

operation, the detailed costs of IM-DSSEmain and IM-DSSEI schemes are the same as in the desktop
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setting since computations were mostly performed by the server while the client only performed some

lightweight computation to generate the token. In IM-DSSEII, the client computation contributed

almost 100% to the total delay due to O(n) number of AES-CTR decryptions, compared with

O(n)/128 in IM-DSSEI+II which was all dominated by the data transmission delay. The limitation of

computational capability of the mobile device is reflected clearly in Figure 3.13b, wherein the client

computation cost accounted for a considerable amount of the overall delay of most schemes except

for the IM-DSSEI+II scheme.

We reported the delays of our framework without taking optimization into account. Mean-

while, the performance of our framework can be further optimized by applying several caching

strategies to minimize the computation, I/O access and communication overhead at both client and

server sides. Specifically, for each search operation, one can observe that our framework requires

to decrypt and re-encrypt an entire row in the incidence matrix. This increases significantly the

computation overhead whereas it is not necessary to protect the row confidentiality once its content

is already revealed. Therefore, given a keyword to be searched at the first time, the server can

decrypt the row, and cache all positions that indicate the files containing the keyword in a compact

index such as encrypted dictionary. When the keyword is repeatedly searched, the server can simply

look up this index to obtain the search result. This caching strategy reduces the server computation

overhead with the cost of maintaining an extra data structure. Both client and server can also

cache the content of keywords being searched/update frequently on local persistent memory to

reduce the network communication and I/O access thereby, reducing the overall delay. We note that

the efficiency of this caching is application-specific since it depends on the characteristics of the

outsourced database and the user query. By open-sourcing the implementation of our framework, we

leave its optimization to practitioners when deployed on specific use-cases in practice.

44



www.manaraa.com

3.5 FS-DSSE: Forward-Private Searchable Encryption with Efficient Search

We propose a new DSSE scheme that offers important features for practical deployment

including forward-privacy, sublinear search time with parallelization support, and low client storage.

This is achieved by harnessing a secure update strategy on a special encrypted index structure

along with a novel caching strategy using a dictionary data structure to partially store the result of

previous search queries. We refer our scheme as Forward-Private and Sublinear DSSE (FS-DSSE)

scheme, with the following desirable properties:

• High-speed search with full parallelization: The proposed scheme offers the lowest search delay

among its counterparts. From the asymptotic point of view, our search complexity is (i) equivalent

to the most efficient yet forward-insecure DSSE scheme [35], and (ii) lower than some state-of-

the-art forward-private DSSE schemes. Our proposed scheme is also fully parallellizable, and

therefore, can take advantage of multi-threading techniques offered by the cloud. The experimental

evaluation showed that, our search delay was comparable to the most efficient yet forward-insecure

DSSE scheme, while it was one to three orders of magnitude faster than its forward-private

counterparts [26] (see §3.5.4).

• Low client storage overhead: The proposed scheme features O(1) client storage overhead, in which

the client only needs to store a few symmetric keys. This property allows the proposed scheme to

be deployed on mobile devices where the client has a limited memory capacity.

• High security: Our scheme not only achieves forward-privacy as the important security feature,

but also can hide the size information of some operations on the encrypted index similar to [189].

Specifically, the proposed scheme does not leak the number of actual keyword-file pairs in update

operation, and the encrypted index size as defined in [165]. Note that such information is leaked
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in most state-of-the-arts DSSE schemes (except [189]), which might be exploited in statistical

attacks.

• Full-fledged implementation and evaluation on real infrastructure: We fully implemented the

proposed scheme and extensively evaluated its performance on a real computing infrastructure.

The experimental result demonstrated that the proposed scheme is highly efficient, which showed

the potentials to be deployed on real-world breach-resilient infrastructure. We release the

implementation of our scheme for public testing and wide adaptation (see §3.5.4).

Our main observation is that the search query in standard DSSE reveals a part of the

encrypted index to the server while retrieving the corresponding encrypted files. Therefore, once a

keyword is searched again, it is not necessary to repeat the computation on the encrypted index to

extract corresponding files that were previously revealed. Instead, one can leverage a more compact

and simple data structure (e.g., dictionary) to store file IDs revealed in the first search so that if the

same query is repeated, the server will simply get the results stored in this data structure. This

strategy will amortize the computation cost incurred in the first search operation and therefore, will

make DSSE schemes more efficient. Note that the price to pay for gaining this search efficiency is

(in worst case) doubling the server storage overhead.

The second objective is to find a DSSE scheme that efficiently adopts the aforementioned

strategy. We observe that, the DSSE scheme in [189] offers a high level of security including

forward-privacy with the cost of linear search complexity. This computation cost can be significantly

reduced by using our proposed caching strategy mentioned above. Therefore, we take the DSSE

scheme in [189] as the base case to construct FS-DSSE with the caching strategy. We start by giving

some brief overview about the data structures used in our scheme, some of which are borrowed from
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[189]. We refer the reader to [189] for detailed description. Note that our caching strategy can be

applied to any forward-private DSSE scheme (e.g. Sophos [26]) to reduce the search cost.

3.5.1 FS-DSSE Data Structures

FS-DSSE leverages Incidence matrix I as the search index and (ii) hash table Tw to keep

track of the position of keywords in I similar to IM-DSSE (see §3.4.2). For simplicity, we assume files

are indexed from 1 to n and therefore, it is not required to create a hash table for them. Additionally,

since FS-DSSE leverages a caching strategy at the server to reduce the computation cost of repeated

search operations, we employ a dictionary data structure D to store the search result of the queries

when the keyword is first searched. D can be considered as an array of size m, where D[i] stores the

list of file IDs which is revealed when searching the keyword indexing at row i in I. D is encrypted

with IND-CPA encryption and is updated if there are file operations performed on I in between the

search queries. We present the update policy in the following section to keep D consistent.

3.5.2 Detailed FS-DSSE Algorithms

In this section, we present the detailed procedures in FS-DSSE as follows:

3.5.2.1 Setup Algorithm

First, given a list of plaintext files f, the client creates the encrypted files C and encrypted

index and sends them to the server by calling IM-DSSEmain.Gen procedure. This procedure (i) generates

three keys, {k1, k2, k3} that collectively constitutes the key K, used to encrypt the files, the incidence

matrix, and the counters in the hash table, respectively, (ii) extracts keywords from the input files,

each being assigned to a row index via the hash table Tw, and (iii) sets the corresponding value for
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(I, C, σ, K)← FS-DSSE.Setup(1κ, f): Create encrypted index

1: k1 ← E .Gen(1κ) and (k2, k3)
$← {0, 1}κ

2: Set K← {k1, k2, k3}
3: Extract keywords (w1, . . . , wm′) from f = {fid1 , . . . , fidn′ }
4: Set counter ui = 1, state vi = 1 for each wi in hash table Tw
5: Set I[i, j]← 1 where i is the keyword index in Tw and 1 ≤ j ≤ n if fj contains keyword i
6: Generate row keys ri ← PRF(k2||i||ui) for 1 ≤ i ≤ m
7: Encrypt each row of I with key ri for 1 ≤ i ≤ m
8: Encrypt counters in hash table Tw with k3

9: Encrypt all files f with k1 as C = {cj : cj ← Enck1fj}
10: return (I, C, σ, K), where σ ← Tw (Send (I, C, σ) to server)

Figure 3.14: FS-DSSE setup algorithm.

each I[i, j]. Note that a counter for each keyword is also stored in Tw, which will be used to derive

a key to achieve the forward-privacy during update. Finally, the client generates the encrypted

incidence matrix I, encrypts counters in hash table Tw and encrypts all files f, and sends them to

the server, while keeping the key K secret.

3.5.2.2 Search Protocol

To search a keyword w, the client first requests the encrypted counter of w stored in Tw.

Then, they send a search token containing the row index i and the row key ri derived from the

counter, to the server. If the keyword is being searched for the first time, then the server decrypts

the whole row I[i, ∗] with ri, adds all column indexes j, where I[i, j] = 1, to the dictionary D[i], and

encrypts D[i]2. The server returns the corresponding encrypted files matching with such indexes to

the client.

If a previously-searched keyword is searched again, the server retrieves indexes of correspond-

ing encrypted files by simply decrypting D[i]. It is important to note that D[i] might need to be

updated, given that there are some file update operations on I that happened after the latest search
2Server encrypts D with a self-generated key just to preserve the data privacy against outside attackers.
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(R, σ′)← FS-DSSE.SearchK(w, I, σ)
Client:
1: Let i be index of w in Tw
2: Download the counter ui of keyword wi in Tw
3: Decrypt ui with k3 and generate key ri ← PRF(k2||i||ui)
4: Send (i, v′i, ri) to server
Server: On receive (i, v′i, ri):
5: if i is first-time searched then
6: Let I′[i, ∗] be the decryption of I[i, ∗] using key ri
7: D[i]← {j : I′[i, j] = 1}
8: Encrypt D[i]
9: else
10: Decrypt D[i]
11: Let J = {j : I[i, j].st = 1}
12: for each j in J do
13: Let I′[i, j] be the decryption of I[i, j] using key ri
14: Add j to D[i] if I′[i, j] = 1, or delete j if otherwise
15: Send R = {cj : j ∈ D[i]} to client
16: Re-encrypt D[i], set I[i, ∗].st = 0 and Tw[i].v ← 0
17: return (R, σ′), where σ′ ← Tw with i-th entry being updated
Client: On receive R:
18: fj ← Deck1cj for each cj ∈ R

Figure 3.15: FS-DSSE search protocol.

on wi. This is achieved by checking the state bit I[∗, ∗].st. Specifically, if I[i, j].st = 1, then the

server decrypts I[i, j] and adds the entry j to D[i] if I[i, j] = 1 (or deletes j if I[i, j] = 0).

The use of data structure D enables FS-DSSE to have an amortized sublinear search com-

plexity. Specifically, the computation cost of the first query is O(n) while that of repeated queries is

O(r), where r is the result size of the first query. The amortized cost is O(r + dw), where dw is the

number of updates, after n search repetitions.

3.5.2.3 Update Protocol

Given an updated file fj , the client extracts the updated keywords and creates an unencrypted

column I[∗, j], which represents the relationship between fj with all the keywords in DB. The client

then generates m row keys ri according to corresponding counters stored in Tw at the server. To

achieve the forward-privacy, the client must encrypt I[∗, j] with fresh keys, which are unknown to
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(I′, C′, σ′)← FS-DSSE.UpdateK(fj , I, σ, C)
Client:
1: Set I[∗, j]← 0 and c← NULL
2: Download all counters ui and states vi (1 ≤ i ≤ m) in Tw
3: Download state column I[∗, j].st
4: Let V = {i : vi = 0}
5: Extract keywords (w1, . . . , wt) from fj
6: Decrypt counters ui with k3, and set ui ← ui + 1 for each i ∈ V
7: Generate keys ri ← PRF(k2||i||ui)
8: Set I[xi, j]← 1 for 1 ≤ i ≤ t, where xi is index of wi in Tw
9: Encrypt fj as cj ← Enck1fj
10: Encrypt each row I[i, j] with row keys ri, for 1 ≤ i ≤ m
11: Let −→u ← (u1, . . . , un), where each ui is encrypted with k3

12: Send (I[∗, j], cj , j,−→u ) to server
Server: On receive (I[∗, j], cj , j,−→u ):
13: Tw[i].u← ui and set Tw[i].v ← 1 for 1 ≤ i ≤ m
14: Set I[∗, j]← I[∗, j] and I[∗, j].st← 1
15: return (I′, C′, σ′), where I′ = I with column j updated, C′ = C updated with cj , σ′ = Tw with counters and

states updated

Figure 3.16: FS-DSSE update protocol.

the server. This can be done by generating the row key with the incremental counter, given that

the key generated with the current counter has been previously revealed to the server during the

previous searches. Finally, the client sends the encrypted column and the encrypted files to the

server, where the encrypted index and encrypted database are updated accordingly.

3.5.3 Security Analysis

Let L be a leakage function which captures information leakage in FS-DSSE including the

maximum number of keywords and files, file IDs, the size of each file and access patterns. FS-DSSE

achieves the following security.

Theorem 2. FS-DSSE is (L)-IND-CKA2 secure by Definition 1.

Proof (Sketch). The security of a DSSE is defined with the dynamic IND-CKA2 notion, which

intuitively means that the search and update tokens sent from the client must not reveal any
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Figure 3.17: Latency of FS-DSSE and its counterparts.

information about the keywords being searched or updated. This notion pertains to leakage functions,

which captures precisely what information is leaked from the ciphertext and the tokens.

Lemma 1. FS-DSSE is forward-private, in the sense that when the client conducts an update, this

operation does not leak any information based on previous search operations [165].

Proof (Sketch). The forward-privacy implies that the content of updated files should not be linked

with any previous search operations. FS-DSSE harnesses the update strategy in [189], in which the

update operation uses all fresh row keys which were never revealed to the server. It is achieved by

increasing the keyword counter maintained in the hash table Tw.

3.5.4 Experimental Evaluation

We first describe our implementation details, experimental setup and evaluation metrics

with state-of-the-art schemes. We then present the performance of the proposed scheme along with

in-depth comparison. Our code is publicly available at https://github.com/ozgurozmen/FS-DSSE
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3.5.4.1 Configurations and Methodology

Our implementation uses the following libraries: tomcrypt for cryptographic primitives; Intel

AES-NI for AES-CTR encryption acceleration; google-sparsehash for hash table; zeroMQ for network

communication.

We used a Desktop with Intel Xeon E3-1231v3 @ 3.40 GHz and 16GB RAM at the client

side. We leveraged our on-campus computing platform equipped with 32 CPUs @ 2.70GHz, and

512GB RAM as the server.

We used the full Enron email dataset, including 517401 files and 1728833 distinct keywords

according to the standard tokenization method. The total number of keyword-file pairs is around

108.

We compare FS-DSSE with some state-of-the art DSSE schemes including the scheme in

[189] (called as 2D-DSSE), Sophos [26] and Πdyn
2lev [35]. For Sophos and 2D-DSSE, we used their

public open-source since their implementation setting is same with ours (C/C++), but we only

simulated Πdyn
2lev due to its lack of open-source C/C++ implementation.

We evaluated all the schemes according to search and update delay, in terms of amortized

costs. To compare the search time, we searched from least-common keywords (e.g., only appears in

a few, e.g., 1-50, of the files) to most-common keywords (e.g., appears in all, e.g., 99-100% of the

files) with 10% intervals. We applied the same strategy to compare the update times. We present

the cost breakdown of search and update operations for our scheme.
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Figure 3.18: Cost breakdown of search query in FS-DSSE.

3.5.4.2 Overall Results

We present the end-to-end delays for search and update operations of FS-DSSE and its

counterparts in Figure 3.17a and Figure 3.17b, respectively. Note that we excluded Sophos in the

Figure 3.17a since it is beyond y-axis limit. FS-DSSE achieves the fastest search time among the

counterparts in most cases, where it is even 1.4× faster than the most efficient yet forward-insecure

scheme Πdyn
2lev.

Since search complexity of 2D-DSSE is linear with the maximum number of files in database,

its search time was constant in any size of search query results. Due to the sublinear property,

FS-DSSE is faster than 2D-DSSE, for the most of the keywords, where it is up to 35× faster when

searching least-common keywords. 2D-DSSE is only 8ms faster than FS-DSSE when searching the

most-common keywords. The search time of Sophos could not fit into this graph due to its heavy

public key operations. Specifically, we measured that end-to-end delay to be around 20 seconds even

when searching for least-common keywords.

FS-DSSE has a constant update time similar to 2D-DSSE for all files with different number of

keywords associated to, since they are both linear with the number of keywords in the database. The
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latency difference between them is that in FS-DSSE, we store Tw at the server instead of the client as

in 2D-DSSE to achieve O(1) client storage, which incurs an extra round of communication overhead.

On the other hand, update time of Πdyn
2lev is the fastest. It is due to the fact that Πdyn

2lev scheme has a

smaller encrypted index size and therefore, random access is performed on a smaller memory region.

Moreover, the random access cost dominates the total update cost in our scheme. The update cost

of Sophos increases linearly with the number of keywords associated with the updated file. The cost

is lower than FS-DSSE when file is associated with 8.18% of the total number of keywords and it is

higher for the rest. Since the update cost of Sophos is dominated with the public key operations

performed at the client-side, when the file is associated with 100% of keywords, it is 11.39× slower

than FS-DSSE.

We also studied the detailed cost of search operation in FS-DSSE to observe the factors that

had the most impact on the total delay. It is depicted in Figure 3.18 that total delay is mostly

dominated by the server computation with the increasing number of files associated with the keyword.

Even though server performs symmetric key encryption/decryption in parallel using 32 cores, it still

dominates the total time since our network speed is extremely fast and the size of the dictionary D,

that stores the indexes, highly increases. Since generating search token does not incur any expensive

operations, the client computation cost is negligible.

Update cost of our scheme is constant as the number of keywords associated with the

updated file increases (see Figure 3.17b). Our measurements showed that update cost of our scheme

is dominated by the I/O access due to non-contiguous memory access. The second major dominating

cost of update operation is the client computation. It requires the re-encryption of the encrypted

index column with new keys to achieve forward-privacy. Since the network speed is fast in this

experiment, the communication cost is lower than other factors.
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Chapter 4: Oblivious RAM3

4.1 Introduction

ORAM, originally introduced by Goldreich [74], is a cryptographic protocol that allows

a client to perform read/write operations over their personal data stored on an untrusted server

without leaking any information regarding the requests’ address (i.e., access pattern). It has

been shown in various application domains that sensitive information can be derived from the

access pattern leakage, including data outsourcing [104, 111], secure enclaves [46, 178, 187] and

searchable encryption [21, 34, 103, 117, 148, 156, 190]. Recent attempts have used ORAM to seal

the access pattern leakages in many systems such as data outsourcing [20, 42, 48, 91], trusted

execution environments [7, 8, 98, 149, 159], secure hardware [62, 63, 123, 127, 139, 151], multi-party

computation [6, 56, 59, 76, 114, 180, 181] and block-chain [38, 84, 120].

Despite the strong security and privacy properties it offers, ORAM is known to incur high

communication/computational cost. Specifically, there exists a logarithmic communication lower

bound in any passive ORAM construction [29, 75, 119], where the server only acts as a storage entity

(i.e., no computation-capable). This overhead, however, has been shown costly for certain applications

in the traditional client-server setting [20, 136]. To reduce the client bandwidth overhead, active

ORAM schemes were introduced, in which the server can perform some sorts of secure computation

[5, 52, 54, 77, 126, 130, 150, 166]. Several active ORAM constructions have successfully achieved a

low (constant) client bandwidth overhead by using either Homomorphic Encryption (HE) [44] or
3This chapter was published in [87–89, 93–96]. Permission is included in Appendix A.
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distributed computation model [166]. Although the HE performance has considerably been improved

recently with efficient implementations, the use of HE in ORAM access still incur remarkable

computation overhead at both the client and server sides. This results in a high access latency, which

may negatively impact the user experience and degrade the quality of the cloud services. Moreover,

most active ORAM schemes only consider em passive security in the sense that the adversary is

assumed to follow the protocol faithfully [44, 130]. The cost to enable active security in the active

ORAM schemes is high, especially in the single-server setting [54], which may not be suitable for

real-life applications.

In many practical scenarios, it may not be possible to guarantee a reliable and high bandwidth

network connection between the client and server. This is particularly true in the case of home

networks and mobile devices with wireless network connectivity (e.g., Wi-Fi, LTE). Given that

ORAM with O(logN) client bandwidth overhead (e.g., Path-ORAM [169]) may not be suitable for

such contexts, there is a significant need to design a new ORAM scheme that can achieve O(1) client

bandwidth overhead. It is also important that the proposed ORAM is suitable for resource-limited

clients and only incurs a low delay to provide a desirable quality of service. Moreover, in practice, it

is likely that a malicious adversary can be present (e.g., malware), who can deviate from the ORAM

protocol to compromise the data integrity and the access pattern privacy. Therefore, our objective is

to create efficient ORAM frameworks that can simultaneously achieve (i) a low client-communication

overhead (i.e., O(1) bandwidth overhead), (ii) low computational overhead at both the client- and

server-side, (iii) low storage, (iv) ability to securely compute on the accessed data and (iv) security

against active adversaries.

56



www.manaraa.com

4.2 Related Work

The first ORAM proposed by Goldreich et al. [74] was in the context of software protection

and followed by refinements [75]. Since then, several ORAM schemes have been proposed [75, 145];

however, many of these can achieve the logarithmic bandwidth overhead that was proven as the

ORAM lower bound under O(1) blocks of client storage [75]. The recent ORAM schemes mainly

have been considered in the client-server model to hide the data access pattern over a remote server

[145]). In 2011, Shi et al. proposed a breakthrough in ORAM constructions by using a tree paradigm

[161]. This tree paradigm led to efficient ORAM scheme proposals (e.g., [39, 71, 150, 169, 179]) that

can achieve the Goldreich-Ostrovsky logarithmic communication bound in [75]. The most simple and

efficient ORAM based on tree-ORAM paradigm is Path-ORAM [169], where the client only needs

to perform read and write operations over a data path, whereas the server only needs to provide

storage functionality (e.g., data sending and receiving only).

Tree-ORAM and Path-ORAM have been adapted to enable access pattern obliviousness

in many applications such as secure processors [127], oblivious data structures [113, 154, 182],

multi-party computation [179, 181] and oblivious storage [8, 43, 125, 135, 158, 186]. Several ORAM

schemes were specifically designed for oblivious file systems [12, 22, 39, 128, 129]. Since all these

systems rely on the Tree-ORAM paradigm, they incur the logarithmic communication overhead,

which was shown costly for certain client-server applications [20, 136]. Recently, Larsen and Nielsen

in [119] have re-confirmed the existence of the logarithmic bandwidth overhead in passive ORAM

schemes (i.e., the server is storage-only).

To reduce the communication overhead, the concept of active ORAM has been proposed,

where the server can perform some computation. Ring-ORAM [150] reduced the communication

cost of Path-ORAM by 2.5 times given that the server performs XOR computations. Path-PIR [130]
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used PIR [174] with Additively HE (AHE) [144]) on top of the Tree-ORAM [161]. [52] used PIR

scheme [174] on top of ObliviStore [167], which is based on Partition-ORAM [168]. The TWORAM

scheme [67] constructed a garbled circuit [188] over the tree ORAM structure, which allows the

client and server to perform the secure computation to access the block. Although many active

ORAM schemes have been presented [10, 52, 54, 61, 67, 130, 132, 150]), most of them either cannot

surpass the logarithmic bound [130, 150] or were shown insecure (i.e., [5, 132]. To the best of our

knowledge, only active ORAM schemes that harness HE techniques [50, 70] can achieve the O(1)

client bandwidth overhead under reasonably large block sizes (e.g., O(log5N) where N is the number

of data blocks) [10, 54, 61]. Despite their communication efficiency, it has been shown in [89, 132]

that performing HE computation during the ORAM access incurred significantly more latency than

streaming O(logN) data blocks as in passive ORAM schemes.

To improve the computation efficiency, ORAM has been explored in the distributed setting

[5, 77, 89, 126, 166]. The first multi-server ORAM was proposed by Stefanov et al. [166], where

the (single-server) Partition-ORAM [168] paradigm was transformed into the multi-server setting to

achieve O(1) client bandwidth overhead and low computation at the servers. The main limitation of

this scheme is that it incurs high client storage overhead (i.e., O(
√
N)) due to the Partition-ORAM

paradigm. Lu et al. [126] and Kushilevitz et al. [116] adapted the hierarchical ORAM construction in

[75] to the multi-server setting to reduce the communication overhead. CHf-ORAM [131] attempted

to use four non-colluding servers to achieve O(1) bandwidth blowup under O(1) blocks of client

storage. However, CHf-ORAM [131] (as well as its predecessor [132]) was broken by Abraham et al.

[5], which also showed an asymptotically tight sub-logarithmic communication bound for composing

ORAM with PIR. Abraham et al. also proposed a two-server ORAM scheme [5], which exploits

the XOR-PIR protocol [45] for the oblivious retrieval. Gordon et al. proposed a two-server ORAM
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scheme [77], which removes the need of updating the position map component in the tree-ORAM

paradigm, thereby saving the factor of O(logN) communication rounds incurred by accessing the

position map recursively at the server. Very recently, Chan et al. proposed a perfectly secure 3-server

ORAM scheme [40] based on the Hierarchical ORAM paradigm in [75]. Gordon et al. proposed a

simple and efficient two-server tree-based ORAM [77], which achieves O(logN) bandwidth overhead

with O(1) communication round. In this scheme, the position map is static meaning that the

path assigned for each data block is deterministic and unchanged, which can be computed by a

pseudo-random function.

Another line of distributed ORAM research focuses on the context of multi-party computation

in the RAM model [56, 59, 114, 181]. In these works, the access patterns are hidden from all parties

so that such ORAM schemes are integrated with some secure computation protocol (e.g., Yao’s

garbled circuit [188]) and, therefore, their cost is higher than classical client-server ORAM model.

The aim is to perform secure computation in the RAM model where both instructions and functions

are hidden from participants and thus ORAM is simply used as a building block. Due to the stronger

privacy model, all these distributed ORAM schemes are less efficient than the distributed ORAM in

the standard client-server setting.

Finally, in contrast to the generic ORAM (where both read and write patterns are hidden

and indistinguishable), there exist some special ORAM schemes that conceal only either read or

write patterns (but not both) [23, 155, 173]. Most of these constructions are more efficient than

generic ORAMs since they target only on the specific operation type (read or write).
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Figure 4.1: Tree-ORAM paradigm.

4.3 Preliminaries

Definition 5 (ORAM Security [161]). Let −→o = (〈op1, idx1, data1〉, . . . , 〈opq, idxq, dataq〉) be a sequence

of data access requests on encrypted database, where opi ∈ {read,write}, idxi is logical address to be

read/written and datai being the data at idxi to be read/written (for i ∈ {1, . . . , q}). Let AP(−→o )

be an access pattern observed by the server S given a data request sequence −→o . An ORAM scheme

is secure if for any two data request sequences −→o i and −→o j of the same length, their access patterns

AP(−→o i) and AP(−→o j) are computationally indistinguishable by anyone but the client.

4.3.1 Tree-ORAM

Most efficient ORAMs [52, 54, 150, 169] to-date follow the tree paradigm [161]. In this

paradigm, there are two main components: A full binary tree data structure stored at the server

side and a position map (denoted as pm) stored at the client side (Figure 4.1). The data blocks are

organized into the tree, where each block is assigned to a path pid selected uniformly at random,

and the position map is used to keep track of the location of each block in the tree. A tree with N

leaves can store up to N data blocks. Each node in the tree is called a “bucket”, which has Z slots

to contain data blocks. Each block b has a unique identifier id and all blocks are of the same size |b|
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(e.g., 4 KB). In the tree, since there are more slots than the number of blocks it can contain, all

empty slots are filled with dummy data.

There are two main sub-protocols in the tree ORAM paradigm: retrieval and eviction. To

access a block, the client first reads the block by executing the retrieval protocol on the path of the

block stored in the position map. The client updates the block and assigns it to a new path selected

uniformly at random. Finally, the client executes the eviction protocol on a random/deterministic

path, which writes the block back to the top levels of the tree and obliviously pushes blocks down

from top to bottom levels. ORAM schemes following the tree paradigm [54, 150, 169] all follow

the aforementioned basic routine, and provides different trade-offs between communication and

computation overhead.

The size of pm is O(N logN). To reduce the client storage to O(1), it is possible to store pm

remotely on the server using the recursive ORAM [161], which increases the number of communication

rounds to O(logN) for each access operation.

4.3.2 Path-ORAM

Stefanov et al. proposed Path-ORAM [169], the most efficient and simple ORAM scheme,

which follows the tree paradigm by Shi et al. [161]. Apart from the position map and the binary

tree, Path-ORAM requires an extra component called stash (S) tp temporarily store some data

blocks at the client. To access a block with Path-ORAM, the client retrieves its path from pm and

then performs a read operation (read) on its path, in which all real blocks in the path are fetched

into S. The client updates the retrieved block with a new random path in pm and then performs

an eviction operation (Evict) to push the blocks in S back to the read path such that each block

resides somewhere in an intersection node between the read path and its assigned path toward the

61



www.manaraa.com

leaf. In Path-ORAM, the stash size |S| was proven to be upper-bounded by the security parameter

λ as |S|= O(λ) blocks, which characterizes the overflow probability and statistical security.

4.3.3 Circuit-ORAM

Circuit-ORAM [179] further reduces the (circuit) complexity of Path-ORAM when imple-

mented in the context of secure hardware (e.g., Intel SGX) or multi-party computation by minimizing

the number of blocks that are involved during the read and eviction operations. In this design, each

bucket has a meta-data component to store the information about real blocks and their path ID

that it contain.The retrieval and eviction of Circuit-ORAM work as follows.

To perform retrieval, similar to the original Tree-ORAM [161], the client reads all data in the

path, but keeps only the block of interest in the stash and removes it from the path. The removal

process can be implemented efficiently by flipping only one bit in the bucket meta-data.

To perform eviction, the client prepares a list of blocks to be pushed down in the eviction

path by scanning the meta-data of buckets in the path. The client picks one block in the stash (if

any) that can be pushed to the deepest level of the tree and then traverses from the root to the leaf

node. In each level, the client drops the on-hold block and picks at most one block to be put into a

deeper level. For each data access, the client invokes two eviction procedures, with the eviction path

being selected randomly or deterministically, as in [71].

Circuit-ORAM has a smaller bucket size Z than Path-ORAM (i.e., 2 vs. 4) and, therefore, it

incurs less server storage overhead. However, Circuit-ORAM incurs approximately 1.25× more I/O

accesses than Path-ORAM since each access operation requires two eviction operations. Similar to

Path-ORAM, the stash size |S| in Circuit-ORAM was proven to be upper-bounded by the security

parameter, i.e., |S|= O(λ) blocks.
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Figure 4.2: Oblivious data structure for a tree.

4.3.4 Write-Only ORAM

In contrast to the generic ORAM, where both read and write operations are hidden, Blass et

al. [23] proposed a Write-Only ORAM scheme, which only hides the write pattern in the context of

hidden volume encryption. Intuitively, 2n memory slots are used to store n blocks, each assigned

to a distinct slot and a position map is maintained to keep track of the location of every block.

Given a block to be written, the client reads O(λ) slots chosen uniformly at random and writes the

block to a dummy slot among O(λ) slots. Data in all slots are IND-CPA encrypted to hide which

slot is updated. By selecting λ sufficiently large (e.g., λ = 80), one can achieve a negligible failure

probability, which might occur when all λ slots are non-dummy. It is also possible to select a small

λ. In this case, the client maintains a stash S of size O(logN), where N is the total number of data

blocks, to temporarily store blocks that cannot be rewritten when all read slots are full.

4.3.5 Oblivious Data Structures

Oblivious Data Structure (ODS) proposed by Wang et al. [182] leverages “pointer techniques”

to reduce the storage cost of position map components in non-recursive ORAM schemes to O(1), if

the data to be accessed have some specific structures (e.g., linked-list, grid, tree, etc.). For instance,

given a binary search-sorted array as illustrated in Figure 4.2, the ORAM block is augmented with

k+ 1 additional slots that hold the position of the block along with the positions and identifiers of its
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children as b := (id, data, pos, childmap), where id is the block identifier, data is the block data, pos

is its position in ORAM structure, and childmap is a miniature position map with entries (idi, posi)

for k children. To ensure that the childmap is up to date, a child block must be accessed through

at most one parent at any given time. If a block does not have a parent (e.g., the root of a tree),

its position will be stored in the client. A parent block should never be written back to the server

without updating positions of its children blocks.

4.3.6 Multi-Party Computation

Secret sharing scheme allows a secret value to be shared and computed securely among

multiple untrusted parties. We briefly introduce several efficient secret sharing schemes as follows.

4.3.6.1 Shamir Secret Sharing

We recall (t, `)-threshold Shamir Secret Sharing (SSS) scheme [160], which comprises two

algorithms SSS = (Create,Recover) as presented in Figure 4.3. To share a secret α ∈ Fp among `

parties, a dealer generates a random polynomial f , where f(0) = α and evaluates f(xi) for party

Pi for 1 ≤ i ≤ `, where xi ∈ F∗p is a deterministic non-zero element of Fp that uniquely identifies

party Pi and it is considered public information (SSS.Create algorithm). f(xi) is referred to as the

share of party Pi, and it is denoted by JαKi. To reconstruct the secret α, the shares of at least t+ 1

parties have to be combined via Lagrange interpolation (SSS.Recover algorithm).

We extend the notion of secret share for a value into the share for a vector in a natural way

as follows: Given a vector v = (v1, . . . , vn), JvKi = (Jv1Ki, . . . , JvnKi) indicates the share of v for party

Pi, which is a vector whose elements are the shares of the elements in v. Similarly, given a matrix I,

JIK denotes the share of I, which is also a matrix with each cell JI[i, j]K being the share of the cell
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SSS.Create(α, t):

1: (a1, . . . , at)
$← Fp

2: for i = 1, . . . , ` do
3: JαKi ← α+

∑t
j=1 aj · x

j
i # xi ∈ F∗p: public identifier of party Pi

4: return (JαK1, . . . , JαK`)

SSS.Recover(A, t):
1: Randomly pick t+ 1 ≤ ` shares {JαKx1 , . . . , JαKxt+1} in A
2: g(x)← LagrangeInterpolation

(
{(xi, JαKxi)}

t+1
i=1

)
3: α← g(0)
4: return α

Figure 4.3: Shamir secret sharing scheme.

I[i, j]. In some cases, to ease readability, we drop the subscript i, when the party is understood from

the context.

Shamir [160] showed that SSS is information-theoretic secure and t-private in the sense that

no set of t or less shares reveals any information about the secret. More precisely, ∀m,m′ ∈ Fp,

∀I ⊆ {1, . . . , `} such that |I|≤ t and for any set A = {a1, . . . , a|I|} where ai ∈ Fp, the probability

distributions of {si∈I : (s1, . . . , s`)← SSS.Create(m, t)} and {s′i∈I : (s′1, . . . , s
′
`)← SSS.Create(m′, t)}

are identical and uniform:

Pr({si∈I} = A) = Pr({s′i∈I} = A).

Ben-Or et al. [19] showed that SSS can be used to obtain t-private protocols. Lemma 2 summarizes

the homomorphic properties of SSS and it was first described in [19].

Lemma 2 (SSS Homomorphic Properties [19]). Let JαK(t)
i be the Shamir share of value α ∈ Fp with

privacy level t for Pi. SSS offers additively and multiplicatively homomorphic properties:

• Addition of two shares

Jα1K(t)
i + Jα2K(t)

i = Jα1 + α2K(t)
i . (4.1)
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• Multiplication w.r.t a scalar c ∈ Fp

c · JαK(t)
i = Jc · αK(t)

i . (4.2)

• Partial share multiplication

Jα1K(t)
i · Jα2K(t)

i = Jα1 · α2K(2t)
i . (4.3)

The two-share partial multiplication (Equation 4.3) in Lemma 2 results in a share of α1 · α2,

which is t-private and represented by a 2t-degree polynomial. It was first observed in [19] that

the resulting polynomial is not uniformly distributed. In order to achieve the uniform distribution

and computation consistency over Jα1 · α2K, it is required to reduce the degree of the polynomial

representation of Jα1 · α2K from 2t to t and re-share the polynomial. This multiplication operation

with degree reduction can be achieved via the secure following multiplication protocol.

Gennaro et al. [68] presented a Secure Multi-pary Multiplication (SMM) protocol for two

Shamir secret-shared values among multiple parties. Given α1, α2 ∈ Fp shared by (t, `)-threshold

SSS as Jα1K(t)
i and Jα2K(t)

i for 1 ≤ i ≤ ` respectively, 2t+ 1 parties Pi among ` parties would like to

compute the multiplication of α1, α2 without revealing the value of α1 and α2. The protocol requires

a Vandermonde matrix V{xi} of size (2t+ 1)× (2t+ 1) having the following structure.
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• Input: Pi owns Jα1K(t)
i , Jα2K(t)

i and wants to compute Jα1 · α2K(t)
i

• Output: Each Pi obtains JβK(t)
i , where β = α1 · α2

1: for each Pi ∈ {P1, . . . , P2t+1} do
2: JβK(2t)

i ← Jα1K(t)
i · Jα2K(t)

i

3: (JβK(t)
j )`j=1 ← SSS.Create(JβK(2t)

i , t)

4: Distribute JβK(t)
j to all Pj ∈ {P1, . . . , P2t+1} \ Pi

5: for each Pi ∈ {P1, . . . , P2t+1} do

6: JβK(t)
i ←

2t+1∑
j=1

V−1[1, j] · JβK(t)
j

Figure 4.4: Secure multi-party multiplication protocol on SSS shares.

V{x1,...,x2t+1} =




x0
1 x1

1 . . . x2t
1

x0
2 x1

2 . . . x2t
2

...
...

. . .
...

x0
2t+1 x1

2t+1 . . . x2t
2t+1




, (4.4)

where xi ∈ Fp are unique identifiers of participating party Pi. We refer to V−1 as the inverse of

Vandermonde matrix. Each party Pi locally multiplies Jα1K(t)
i and Jα2K(t)

i yielding Jα1 · α2K(2t)
i , and

creates shares of Jα1 ·α2K(2t)
i by a new random polynomial of degree t for 2t+1 parties and distributes

them to other 2t parties. Finally, each party locally performs the dot product between the received

shares and V−1
{xi}[1, ∗] to obtain a new share of α1 · α2, which is now represented by a polynomial of

degree t as Jα1 · α2K(t)
i . Figure 4.4 presents this multiplication protocol.

Lemma 3 (SMM Protocol Privacy [68]). The SMM protocol in [68] (denoted as ? operator) offers

homomorphic property for full multiplication between two SSS-shares, whose result is t-private as:

Jα1 · α2K(t)
i = Jα1K(t)

i ? Jα2K(t)
i (4.5)
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(〈s〉0, . . . , 〈s〉`−1)← AuthCreate(α, s, `):
1: (JsK0, . . . , JsK`−1)← ASSS.Create(s, `)
2: (JαsK0, . . . , JαsK`−1 ← ASSS.Create(αs, `)
3: return (〈s〉0, . . . , 〈s〉`−1), where 〈s〉i ← (JsKi, JαsKi)

s← AuthRecover(α, (〈s〉0, . . . , 〈s〉`−1)):
1: s← ASSS.Recover(JsK0, . . . , JsK`−1)
2: σ ← ASSS.Recover(JαsK0, . . . , JαsK`−1)
3: if αs 6= σ then return ⊥
4: return s

Figure 4.5: Authenticated additive secret sharing.

4.3.6.2 Additive Secret Sharing

Additive secret sharing scheme (ASSS) comprises two algorithms ASSS = (Create,Recover)

as follows.

• (s0, . . . , s`−1)← ASSS.Create(s, `): Given a secret s ∈ Fp and a number of parties ` as input, it

outputs random values si as the shares for ` parties such that s =
∑

i si. We denote the additive

share of a value s for party Pi as JsKi, i.e., JsKi = si.

• s← ASSS.Recover(s0, . . . , s`−1): Given ` shares as input, it returns the secret as s←∑
i si.

Additive secret sharing is t-private in the sense that no set of t or fewer shares reveals any

information about the secret. More formally, ∀s, s′ ∈ Fp, ∀L ⊆ {0, . . . , `− 1} such that |L|≤ t and

for any S = {s0, . . . , s|L|−1} where si ∈ Fp, the probability distributions of {si∈L : (s0, . . . , s`−1)←

ASSS.Create(s, `)} and {s′i∈L : (s′0, . . . , s
′
`−1)← ASSS.Create(s′, `)} are identical and uniform.

Additive secret sharing offers additive homomorphic properties as follows. Given additive

shares Js1K and Js2K and c ∈ Fp, each party can locally compute the additive share of addition and

scalar multiplication as Js1 + s2K← Js1K + Js2K and JcsK← cJsK.
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Replicated Secret Sharing (RSS) scheme enables homomorphic multiplication over ad-

ditive shares with information-theoretic security [105]. In the three-party setting, each party

Si ∈ {S0, S1, S2} stores two additive shares of a secret s ∈ Fp, JsKi and JsKi+1
4. To com-

pute JuvK from JuK and JvK, RSS proceeds as follows. First, each party Si (locally) computes

xi ← JuKiJvKi + JuKiJvKi+1 + JuKi+1JvKi and represents xi with the addition of random values as

xi = r
(i)
0 + r

(i)
1 + r

(i)
2 . Each Si retains (r

(i)
i , r

(i)
i+1) and sends (r

(i)
i−1, r

(i)
i ) and (r

(i)
i , r

(i)
i+1) to other parties

Si−1 and Si+1, respectively. Finally, each Si obtains the shares of multiplication result by (locally)

computing JuvKi ← r
(0)
i + r

(1)
i + r

(2)
i and JuvKi+1 ← r

(0)
i+1 + r

(1)
i+1 + r

(2)
i+1.

We recall the authenticated secret sharing in [51], in which each secret s is attached with an

information-theoretic Message Authenticated Code (MAC) computed as αs, where α is a global MAC

key owned by the dealer. We denote the authenticated share of a secret s as 〈·〉, which contains the

additive share of s and the additive share of αs as 〈s〉 = (JsK, JαsK), where JαsK is created in the same

manner as JsK. Figure 4.5 presents the algorithms to create authenticated shares and recover the

secret. We present a homomorphic multiplication protocol with malicious security, which follows the

pre-computation model [51, 112] using Beaver multiplication triples [14] of the form (a, b, c), where

c = ab. In this setting, each untrusted party Si owns a share of the MAC key as JαKi. In the offline

phase, all untrusted parties harness homomorphic encryption and zero-knowledge protocols [51, 112]

to compute the authenticated share of the Beaver triple and its MAC in such a way that no party

learns about (a, b, c) and α. To this end, each Si obtains (〈a〉i, 〈b〉i, 〈c〉i), where 〈a〉i = (JaKi, JαaKi)

and so forth. In the online phase, given 〈u〉 = (JuK, JαuK) and 〈v〉 = (JvK, JαvK) and all parties

want to compute 〈uv〉, each Si first (locally) computes JεKi ← JuKi − JaKi, and JρKi ← JvKi − JbKi.

All parties come together to open ε and ρ by each Si broadcasting JεKi and JρKi. Finally, each Si
4We note that the subscript index in this case is modulo 3.
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(ρ1, . . . , ρ`)← PIRxor.CreateQuery(j): Create select query for a database size n
1: Initialize binary string e← 0n and set e[j]← 1
2: for i = 1, . . . , `− 1 do
3: ρi ← {0, 1}n

4: ρ` ← ρ1 ⊕ . . .⊕ ρ`−1 ⊕ e
5: return (ρ1, . . . , ρ`)

ri ← PIRxor.Retrieve(ρi,B): Retrieve an item in B
1: Parse B as (b1, . . . bn)
2: Initialize ri ← {0}m
3: for j = 1, . . . , n do
4: if ρi[j] = 1 then
5: ri ← ri ⊕ bj
6: return ri

b← PIRxor.Reconstruct(R): Reconstruct the item
1: b← r1 ⊕ . . .⊕ r`, where ri ∈ R for 1 ≤ i ≤ `
2: return b

Figure 4.6: XOR-based PIR.

(locally) computes the authenticated share of the multiplication as 〈uv〉i = (JuvKi, JαuvKi), where

JuvKi ← JcKi + εJbKi + ρJaKi + ερ and JαuvKi ← JαcKi + εJσbKi + ρJσbKi + ερJαKi. At the end of the

protocol, all parties can verify the integrity of opened values as follows. Let xj be an opened value

and JαxjKi is the share of its MAC to Si. Let bj be a random value that all parties agree on. Each

Si locally computes x ← ∑
j bjxj , JyKi ←

∑
j bjJαxjKi and JωKi ← JyKi − xJαKi. All parties come

together to open ω as ω ←∑
iJωKi. If ω = 0, all the opened values pass the integrity check.

4.3.7 Private Information Retrieval

Private Information Retrieval (PIR) enables retrieval of a data item from an (unencrypted)

public database without revealing which item being fetched. A multi-server PIR [17, 73] is defined

as follows.

Definition 6 (Multi-Server PIR [17, 45, 73]). Let DB = (b1, . . . , bn) be a database consisting

of n items being stored in ` servers. A multi-server PIR protocol consists of three algorithms:

PIR = (CreateQuery,Retrieve,Reconstruct). Given an item bi in DB to be retrieved, the client creates
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(JeK1, . . . , JeK`)← PIRsss.CreateQuery(j): Create select queries
1: Let e := (e1, . . . , en), where ej ← 1, ei ← 0 for 1 ≤ i 6= j ≤ n
2: for i = 1, . . . , n do
3: (JeiK1, . . . , JeiK`)← SSS.Create(ei, t)

4: for l = 1, . . . , ` do
5: JeKl ← (Je1Kl, . . . , JenKl)
6: return (JeK1, . . . , JeK`)

JbKi ← PIRsss.Retrieve(JeKi,B): Retrieve the item
1: JbKi ← JeKi ·B
2: return JbKi

b← PIRsss.Reconstruct(B, t): Recover the retrieved item from the set of answers B
1: b← SSS.Recover(B, t)
2: return b

Figure 4.7: SSS-based PIR.

queries (e1, . . . , e`)← PIR.CreateQuery(i) and distributes ej to server Sj . Each server responds with

an answer aj ← PIR.Retrieve(ej ,DB). Upon receiving ` answers, the client computes the value of

item bi by invoking the reconstruction algorithm b← PIR.Reconstruct(a1, . . . , a`).

The security of the protocol is defined in terms of correctness and privacy. A multi-server PIR

protocol is correct if the client computes the correct value of b from any ` answers via PIR.Reconstruct

algorithm with probability 1. The concept of t-privacy for protocols is applied naturally to the PIR

setting and follows directly from the t-privacy of SSS and the fact that among the servers they only

have access to t shares of the query vector [73].

We recall two efficient multi-server PIR protocols as follows.

• XOR-Based PIR [45]: It relies on XOR trick to perform the private retrieval, in which the

database B contains n items bi, each being interpreted as a m-bit string (Figure 4.6).

• SSS-Based PIR [17, 73]: It relies on SSS to improve the robustness of multi-server PIR, in which

the database B contains n items bi, each being interpreted as an element of Fp (Figure 4.7).
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Table 4.1: Summary of S3ORAM schemes and some of their counterparts.

Scheme Bandwidth Overhead† Block
Size∗

Server
Computation

Client
Block Storage‡ # serversClient-server Server-server

Path-ORAM [169] O(logN) - Ω(1) - O(logN) 1
Ring-ORAM [150] O(logN) - Ω(1) XOR O(logN) 1
Onion-ORAM [54] O(1) - Ω(log5N) Additively HE [50] O(1) 1
Dist. OblivStore [166] O(1) O(logN) Ω(1) Permutation and IND-CPA encryption O(

√
N) 2

2-Server ORAM [126] O(logN) - Ω(1) Permutation and cuckoo hashing O(1) 2

S3ORAMO O(1) O(logN) Ω(log2N) Secure addition and
multiplication of SSS values

O(1)
3

S3ORAMC O(1) O(logN) Ω(logN) O(logN)

† Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers. Due to the eviction,
the server-server bandwidth overhead of S3ORAMO is O(λ logN), where λ is the statistical security parameter. Since the eviction is performed every
λ/2 access requests, the amortized server-server bandwidth overhead of S3ORAMO is O(logN).
∗ This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction data, thereby meeting the expected
client-bandwidth overhead. In this table, we consider all the ORAM schemes in the non-recursive form, where the position map is stored at the client.
‡ Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component used in
[150, 169], which, therefore, does not include the cost of storing the position map of size O(N logN). Notice that all the ORAM schemes in this table,
except the one in [126], require the position map component.

4.4 S3ORAM: A Multi-Server ORAM Framework with Constant Client-Bandwidth

We present S3ORAM, a new multi-server ORAM framework, which features O1 client

bandwidth blowup, low storage and efficient computation at both client- and server-side. Our

proposed framework consists of two multi-server active ORAM schemes including S3ORAMO and

S3ORAMC, in which the former minimizes the client storage requirement while the latter optimizes

the computation and storage overhead at the server-side. We first present our main idea and then

outline the desirable properties of our proposed framework as follows.

Most efficient ORAM schemes to-date follow the tree paradigm by Shi et al. [161]. In

this paradigm, there are two main procedures for each ORAM access: retrieval and eviction. Our

intuition is to harness the homomorphic properties of Shamir secret sharing along with a secure

multi-party multiplication protocol to perform these procedures in an oblivious manner. To achieve

O(1) client-bandwidth overhead, it is imperative to ensure that each procedure only incurs a small

constant number of data blocks to be transmitted between the client and the server(s). In the

standard (single-server) ORAM setting, we observe that both Onion-ORAM [54] and Circuit-ORAM

[179] schemes require low client storage and offer elegant retrieval and eviction strategies that can
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be further implemented with SSS homomorphic computation to achieve O(1) client-bandwidth

overhead. Therefore, the main idea of S3ORAMO and S3ORAMC schemes in our S3ORAM framework

is to harness SSS and SMM protocol to perform the retrieval and eviction operations in the line

of Onion-ORAM and Circuit-ORAM, respectively, but in a significantly more computation- and

client bandwidth-efficient manner. By doing this, S3ORAMO (resp. S3ORAMC) inherits all desirable

properties of Onion-ORAM (resp. Circuit-ORAM) regarding the low client storage cost, while

achieving O(1) client-bandwidth overhead without the costly homomorphic operations but instead

requiring only a lightweight computation and suitability for small block sizes. Table 4.1 outlines a

high-level comparison of S3ORAM and its counterparts.

Our S3ORAM framework offers the following properties.

• Low client-server communication: All schemes in S3ORAM framework offer O(1) client bandwidth

blowup, compared with O(logN) of Path-ORAM [169] and Ring-ORAM [150] (with a fixed

number of servers). S3ORAM schemes feature a smaller block size (i.e., Ω(log2N) in S3ORAMO,

Ω(logN) in S3ORAMC), than state-of-the-art O(1) bandwidth blowup ORAM schemes that

require Fully or Partially HE operations (e.g., Ω(log5N) in Onion-ORAM [54], Ω(log6N) in

Bucket-ORAM [61]).

• Low client and server computation: S3ORAM schemes require the servers to perform only

lightweight modular additions and multiplications, which are much more efficient than partial HE

operations (e.g., [50]). In particular, we show in §4.4.5 that, the server computation of S3ORAM

schemes is three orders of magnitude faster than that of Onion-ORAM.

The client in S3ORAM schemes only performs lightweight computations for retrieval and eviction

operations. Thus, it is more efficient than Onion-ORAM, which requires a number of HE
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operations. For example, S3ORAM requires only a few milliseconds compared to minutes of

Onion-ORAM to generate an encrypted access query. Moreover, since data blocks in S3ORAM

schemes are single-layered “encrypted”, the “decryption” process is less costly so that it is faster

than other ORAMs (e.g., [54, 166]), whose blocks are multi-layered encrypted.

• Low end-to-end delay: Due to low bandwidth and computation overhead, S3ORAM schemes

are approximately three orders of magnitude faster than Onion-ORAM, while it is one order

of magnitude faster than Path-ORAM in networks with moderate client bandwidth. We notice

that for S3ORAM to provide all its advantages, it is assumed that good network throughput is

available between the servers. In our detailed analysis in §4.4.5.5, we show that if the inter-server

bandwidth is limited and the client has access to a high-speed Internet connection, state-of-the-art

(single-server) ORAM schemes (i.e., Path-ORAM, Ring-ORAM) are more efficient than S3ORAM

(see §4.4.5.5 for a detailed analysis).

• Low client storage: S3ORAMO scheme features O(1) blocks of client storage, compared with O(λ)

blocks in Path-ORAM/Ring-ORAM, and O(
√
N) blocks in [168]. S3ORAMC scheme achieves the

same block of client storage with Path-ORAM/Ring-ORAM (i.e., O(λ))

• High security : All S3ORAM schemes achieve information-theoretic statistical security. The

statistical bit comes from the tree-paradigm by Shi et al. [161]. The information-theoretic

property comes from SSS and its multi-party multiplication protocol.

• Full-fledged implementation and experiments: We fully implemented S3ORAMC and S3ORAMO

schemes in our S3ORAM framework and evaluated their performance in an actual cloud envi-

ronment (i.e., Amazon EC2). The detailed experiments showed that both S3ORAM schemes

are efficient in practice and they can be deployed on mobile devices with a limited computation
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capacity and low network connection. We have released the source code of S3ORAM framework

for public use and testing.

S3ORAM harnesses the distributed setting to achieve constant client bandwidth overhead

with efficient computation and the server-side simultaneously. It should be clear, however, that

the use of standard secret sharing techniques and, in particular, Shamir secret sharing, renders our

protocol vulnerable to collusion attacks (as it is standard in this setting). It should be observed that

this vulnerability does not exist in the standard single-server ORAM model. Therefore, as it is also

standard in this model, we note that S3ORAM cannot offer any security guarantee if the number of

colluding servers exceeds the privacy threshold. Another limitation of S3ORAM is that it only offers

security in the semi-honest setting (see [54] for the exemplified active attack).

4.4.1 System and Security Models

4.4.1.1 System Model

Following the literature in distributed secure computation (e.g., [19, 73]), we assume a

synchronous network, which consists of a client and ` ≥ 2t+ 1 semi-honest servers S = {S1, . . . , S`}.

It is also assumed that the channels between all the players are pairwise-secure, i.e., no player can

tamper with, read, or modify the contents of the communication channel of other players. We assume

that all parties behave in an “honest-but-curious” manner in which parties always send messages

as expected but try to learn as much as possible from the shared information received or observed.

Notice that we do not allow parties to provide malicious inputs, i.e., parties are not allowed to

behave in a Byzantine manner.
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A protocol is t-private [19] (see [73] for similar definitions in the context of distributed PIR)

if any set of at most t parties cannot compute after the protocol execution more than they could

compute individually from their set of private inputs and outputs. Alternatively, the parties have not

“learned” anything. Our protocols in general, offer information-theoretic guarantees unless something

is said explicitly to the contrary. This implies that our solutions are secure against computationally

unbounded adversaries. As it is standard, we require that all computations by the servers and client

be polynomial time and efficient. Finally notice that not only is the interaction between the servers

and client performed in such a way that information-theoretic security is guaranteed but also the

database being accessed is shared among the servers in a way that no coalition of up to t servers can

find anything about the database contents (also in an information-theoretic manner).

4.4.1.2 Security Model

We now define the security of multi-server ORAM in the semi-honest setting proposed in [5]

as a straightforward extension of the definition in [5] to the multi-server setting.

Definition 7 (Multi-Server Active ORAM). Let x = ((op1, id1, data1), . . . , (opq, idq, dataq)) be a data

request sequence of length q, where opj ∈ {Read,Write}, idj is the identifier to be read/written and

dataj is the data identified by idj to be read/written. Let ORAMj(x) represent the ORAM client’s

sequence of interactions with the server Si given a data request sequence x.

A multi-server ORAM is correct if for any sequence x, {ORAM1(x), . . . , ORAM`(x)} returns data

consistent with x except with a negligible probability.

A multi-server ORAM is t-secure if ∀I ⊆ {1, . . . , `} such that |I|≤ t, for any two data access sequences

x,y with |x|= |y|, their corresponding transcripts {ORAMi∈I(x)} and {ORAMi∈I(y)} observed by

a coalition of up to t servers {Si∈I} are (perfectly/statistically/computationally) indistinguishable.
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Table 4.2: S3ORAM notation.

Symbol Description
T S3ORAMtree structure.
Z Bucket size.

T[i],T[i][j] i-th bucket of S3ORAMtree T and j-th slot in the i-th bucket of T.
|b|, b, c Block size, block and block chunk, respectively.
N,m Number of blocks and number of chunks in a block.
H Height of the S3ORAMtree.
pm Position map.

(pid, pIdx)← pm[id] Precise location (i.e., path ID and path index) of the block id.
I ← P(pid) Set of indexes of buckets residing in the path pid.

4.4.2 The Proposed S3ORAM Framework

S3ORAM follows the typical procedure of tree-based ORAMs [161]. Specifically, given a

block to be accessed, the client first retrieves it from the outsourced ORAM structure via a secure

retrieval operation. The retrieved block is then assigned to a random path, and written back to

the root bucket. Finally, an eviction operation is performed in order to percolate data blocks to

lower levels in the ORAM structure. The intuition behind S3ORAM access protocol is as follows: (1)

We integrate SSS with a multi-server PIR protocol to perform a private retrieval operation with

some homomorphic properties; (2) We leverage these homomorphic properties of SSS and a SMM

protocol to perform block permutation and to preserve t-privacy level of ORAM structure in the

eviction phase, without relying on costly partial HE operations. Notice that the idea of using PIR

to implement the ORAM retrieval phase was first suggested in [130], and later in some subsequent

works such as [5, 52, 54, 77]. In Table 4.2, we outline the notation used in the S3ORAM schemes

and throughout the rest of the dissertation.

4.4.2.1 Data Structure

S3ORAM schemes follow the tree paradigm proposed by Shi et al. [161] (see §4.3.1), in which

the outsourced database is split into size-equal blocks and then organized to a balanced binary tree
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S3ORAM.Setup(DB):
1: Split DB into blocks (b1, . . . , bN ) with corresponding IDs (id1, . . . , idN )
2: T[i][j]← {0}|b| for 1 ≤ i < 2H+1 and 1 ≤ j ≤ Z
3: for i = 1, . . . , N do
4: zi

$← {1, . . . , 2H}
5: Put bi into an empty slot indexed y of the leaf bucket in path zi
6: pm[idi]← (zi, H · Z + y)

7: for i = 1, . . . , 2H+1 − 1 do
8: for j = 1, . . . , Z do
9: (c

(1)
i,j , . . . , c

(m)
i,j )← T[i, j], where c(k)

i,j ∈ Fp
10: (Jc(k)

i,j K1, . . . , Jc(k)
i,j K`)← SSS.Create(c

(k)
i,j , t) for 1 ≤ k ≤ m

11: JT[i, j]Kl ← (Jc(1)
i,j Kl, . . . , Jc

(m)
i,j Kl) for 1 ≤ l ≤ `

12: return (JTK1, . . . , JTK`) # Send JTKi to Si for 1 ≤ i ≤ `

Figure 4.8: S3ORAM setup algorithm.

(T) with a height of H. Each node in T is called a bucket with Z slots so that it can store up to Z

data blocks. Thus, T can store up to N < Z · 2H data blocks.

At the client-side, the client maintains a position map component (pm) to keep track of the

assigned path (pid) for each data block in the tree. Additionally, the client stores the location of

each data block in its assigned path. Hence, pm is of structure pm := (id, 〈pid, pIdx〉), where id is

the block ID, 1 ≤ pid ≤ 2H is the assigned path of the block, and 1 ≤ pIdx ≤ Z · (H + 1) is the

location of the block in its path. The client also maintains a so-called stash component (denoted as

S) to temporarily store accessed block(s) from the tree.

In the S3ORAM framework, the tree structure is SSS-shared among ` servers. Figure 4.8

presents the Setup algorithm to construct data structures in S3ORAM schemes given a database

input DB. First, the client organizes DB into N data blocks, and then initializes every slot in each

bucket of the tree (T) with a 0’s string of length |b| (lines 1-2). The client arranges all blocks into

T, wherein each block (bi) is independently assigned to a random leaf bucket of T. Notice that |b|

can be larger than dlog2 pe and therefore, it might not be suitable for arithmetic computation over

Fp. To address this, the client splits the data in each slot of T into equal-sized chunks cj ∈ Fp (line
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S3ORAM.Access(op, id, b∗):
1: b← S3ORAM.Retrieve(id)

2: pm[id].pid
$← {1, . . . , kH+1}

3: if op = write then
4: b← b∗

5: S← S ∪ b
6: Execute S3ORAM.Evict()
7: return b

Figure 4.9: General access procedure in S3ORAM schemes.

9)5. Finally, the client creates shares of T via SSS.Create algorithm for each chunk in each slot in T

(line 10). The S3ORAM distributed data structure consists of ` shares of T as {JTK1, . . . , JTK`}.

Figure 4.9 presents the general access operation of S3ORAMschemes following the tree-ORAM

paradigm. Basically, there are two main subroutines in the S3ORAM.Access algorithm: Retrieve (line

1) and Evict (line 6). The former is to obliviously retrieve the block of interest from the ORAM-tree

stored on the cloud, while the latter is to obliviously write the retrieved block back to the ORAM-tree.

Once the block is retrieved, it is assigned to a new random path (line 2), updated if needed (line 3),

and then stored in the stash (line 5) to be pushed back later via the Evict protocol.

In our S3ORAM framework, we select the eviction path deterministically, which follows the

reverse lexicographical order proposed in [71]. Specifically, given a binary tree of height H, where

edges in each level are indexed by either 0 (left) or 1 (right), the collection of edges of the eviction

path at the EvictCtr-th eviction operation is calculated by the following formula.

v = DigitReverse2(EvictCtr mod 2H), (4.6)

where DigitReverse2 denotes the order-reversal of the binary string representation of the decimal

integer input.
5We assume implicitly that we choose an appropriate prime p such that every string cj when interpreted as an element
of Fp is less than p.
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In the following, we present the main scheme in our S3ORAMframework called S3ORAMO,

which features the low client storage overhead. We describe another S3ORAM scheme called

S3ORAMC, which offers efficient computation and low server storage overhead with the cost of client

storage afterward.

4.4.2.2 S3ORAMO: S3ORAM with Low Client Storage

We introduce S3ORAMO, an S3ORAM scheme that does not require the client to maintain

the stash component, thereby saving a factor of O(λ) client storage overhead. To achieve this,

S3ORAMO follows the Triplet Eviction strategy in [54]. To enable O(1) client-bandwidth blowup,

S3ORAMO harnesses homomorphic properties of SSS, which allows the client to “instruct” the servers

to perform efficient retrieval and eviction operations in a secure manner without having to download

and upload O(logN) data blocks.

In the following, we describe in detail the retrieval and eviction protocol of S3ORAMO scheme.

To achieve O(1) client bandwidth blowup, the retrieval protocol in S3ORAMO scheme requires

an efficient PIR protocol to privately retrieve the block of interest. We first describe the PIR protocol

based on SSS as follows.

Our objective is to privately retrieve a block of interest residing in the queried path on the

S3ORAMO tree. Recall that in the single-server HE-based ORAM schemes (e.g., [10, 54]), the PIR

query is encrypted with additive/fully HE. In S3ORAMO, the tree is SSS-shared among ` servers,

which features highly efficient additive and multiplicative homomorphic properties. We observe that

the multi-server PIR scheme in [17, 73] relies on SSS to create PIR queries and, therefore, it can

serve as a suitable private retrieval tool to be used for S3ORAMO scheme. We describe SSS-based

PIR scheme in Figure 4.10, and further outline it as follows:
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PIR.CreateQuery(j):
1: Let e := (e1, . . . , en), where ej ← 1, ei ← 0 for 1 ≤ i 6= j ≤ n
2: for i = 1, . . . , n do
3: (JeiK(t)

1 , . . . , JeiK(t)
` )← SSS.Create(ei, t)

4: JeK(t)
i := (Je1K(t)

i , . . . , JenK(t)
i ), for 1 ≤ i ≤ `

5: return (JeK(t)
1 , . . . , JeK(t)

` )

PIR.Retrieve(JeK(t)
i , JDBK(t)

i ):

6: JbK(2t)
i ← JeK(t)

i · JDBK(t)
i

7: return JbK(2t)
i

PIR.Reconstruct(JbK(2t)
1 , . . . , JbK(2t)

` ):

8: b← SSS.Recover(JbK(2t)
1 , . . . , JbK(2t)

` , 2t)
9: return b

Figure 4.10: SSS-based PIR scheme.

S3ORAMO.read(id):
Client:
1: (s, j)← pm[id]

2: (JeK(t)
1 , . . . , JeK(t)

` )← PIR.CreateQuery(j)

3: Send (s, JeK(t)
i ) to server Si, for 1 ≤ i ≤ `

Server: each Si ∈ {S1, . . . , S`} receiving (s, JeK(t)
i ) do

4: I ← P(s)
5: for j = 1, . . . ,m do
6: Let JcjK(t)

i contain j-th chunk of Z slots in JT[i′]K(t)
i , ∀i′ ∈ I

7: JcjK(2t)
i ← PIR.Retrieve(JeK(t)

i , JcjK(t)
i )

8: Send (Jc1K(2t)
i , . . . , JcmK(2t)

i ) to client

Client: On receive ({Jc1K(2t)
i }`i=1, . . . , {JcmK(2t)

i }`i=1)

9: cj ← PIR.Reconstruct(JcjK(2t)
1 , . . . , JcjK(2t)

` ) for 1 ≤ j ≤ m
10: b← (c1, . . . , cm)
11: return b

Figure 4.11: S3ORAMO retrieval subroutine.

Assume that each server Si stores a share of the database DB containing n blocks denoted

as JDBKi, which can be interpreted as a vector with each i-th component being the share of the i-th

item in DB. Let j be the index of the block in DB to be privately retrieved. The client executes

the PIR.CreateQuery algorithm, which creates an n-dimensional unit vector with all zero coordinates

except the j-th coordinate being set to 1 (line 1) and then, secret-shares it with SSS (lines 2–3). The

client then distributes these shares to the corresponding servers, each answering with the result of

the dot product between the received share vector and its share of DB by executing the PIR.Retrieve
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S3ORAMO.Evict():
1: (c1, . . . , cm)← b, where b is the block that has just been retrieved
2: (JcjK1, . . . , JcjK`)← SSS.Create(cj , t) for 1 ≤ j ≤ m
3: Write (Jc1Ki, . . . , JcmKi) to slot JT[1, nr + 1]Ki in server Si for 1 ≤ i ≤ `
4: nr ← nr + 1 mod A # nr is initialized with 0
5: if nr = 0 then
6: v ← DigitReverse2(EvictCtr mod 2H)
7: Execute S3ORAMO.EvictAlongPath(v) protocol
8: EvictCtr← EvictCtr + 1 mod 2H # EvictCtr is initialized with 0

Figure 4.12: S3ORAMO eviction subroutine.

algorithm (line 6). Finally, the client executes the PIR.Reconstruct algorithm, which invokes the

SSS.Recover algorithm over ` answers to recover the desired block (line 8). Since DB in this context

is SSS-secret shared instead of plaintext as in [17, 73], our PIR.Reconstruct algorithm requires at

least 2t+ 1 shares (instead of t+ 1) to recover the item correctly.

We present the retrieval protocol in S3ORAMO in Figure 4.11, which employs three algorithms

of the above SSS-based PIR scheme. Given the block to be read, the client first determines its

location in the S3ORAMO tree via the position map pm (line 1) and then, privately retrieves it

using the SSS-based PIR protocol. In this case, the server interprets all slots in the retrieval path

as the database input DB in the PIR.Retrieve algorithm. Hence, the size of DB and the length of

the query vector is n = Z · (H + 1). Since there are m separate chunks in each slot, the servers

execute the PIR.Retrieve algorithm m times with the same PIR query but over different DBj , where

each DBj contains the j-th chunk of all slots in the retrieval path (lines 5–7). Finally, the client

obtains the desired block by recovering all chunks upon receiving their corresponding shares using

the PIR.Reconstruct algorithm (line 9).

To eliminate the need of maintaining the stash component at the client-side, S3ORAMO

follows the Triplet Eviction strategy proposed in [54]. The S3ORAMO.Evict algorithm in Figure 4.12

presents the eviction procedure in S3ORAMO scheme. Specifically, after the block is privately
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retrieved via the S3ORAMO.read protocol, the client creates new SSS-shares for it (lines 1–2), and

then writes the share to an empty slot in the root bucket of the corresponding server (lines 3). After

A ≤ Z successive retrievals, the client selects a deterministic eviction path following the reverse

lexicographical order (line 5), and executes the S3ORAMO.EvictAlongPath protocol, to obliviously

percolate the blocks from upper levels (e.g., root bucket) to deeper levels (e.g., leaf buckets).

According to the Triplet Eviction policy, for each level in the eviction path, all blocks from

the source bucket (T[i]) will be obliviously moved to all its children (i.e., T[2i], T[2i + 1]). We

follow the same terminology used in [54] to denote the buckets involved in each Triplet Eviction

operation: If the child of the source bucket resides in the eviction path, it is called the destination

bucket while the other child is called the sibling bucket (see Figure 4.13 for clarification). In our

S3ORAMO scheme, the move is performed by computing the matrix product, in which the client

creates permutation matrices and requests the servers to jointly perform the matrix product between

such matrices and vectors containing data along the eviction path in the S3ORAMO tree. We present

the algorithmic description of this strategy in the S3ORAMO.EvictAlongPath protocol in Figure 4.14

with details as follows.

Let JuK be a 2Z-dimensional share vector formed by concatenating all data in the source

bucket and the destination bucket. The client creates a permutation matrix I ∈ {0, 1}2Z×Z (line 2)

such that the matrix product between JuK and I will result in a Z-dimensional vector JvK, in which

data at position i in JuK is moved to position j in JvK. That is, I is a matrix, where I[i, j]← 1 if the

block at position i in JuK is expected to move to position j in JvK (line 7). As a result, I[i+Z, i]← 1

if the block currently at position i in JvK remains (line 12). To hide the location information of

real blocks after permutation, the client “encrypts” every single element of I with SSS resulting

in a share matrix JIK ∈ F2Z×Z
p (line 13). Note that the matrix product between these two shares
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(2) SMM Protocol (3): Blocks in source bucket are copied to (non-leaf) sibling bucket

Server 1

(2): Blocks in source bucket are pushed down via matrix product

Server 2 Server 3

Triplet Eviction

Source bucket

Destination bucket

Sibling bucket

Eviction path

Triplet Eviction

(3)(2)

Triplet Eviction

Client

(1) Send permutation matrices

(3)(2) (3)(2)

{JIhK(t)2 }H
h=1{JIhK(t)1 }H

h=1 {JIhK(t)3 }H
h=1, JI0HK1 , JI0HK2 , JI0HK3

Figure 4.13: The triplet eviction using SSS and SMM protocol.

results in a share vector with each element being represented by a degree-2t polynomial. To maintain

the consistency and privacy of the S3ORAMO tree structure, servers will jointly perform the SMM

protocol to reduce the degree of the polynomial of each component in JvK from 2t to t (line 22 and

line 26).

We can apply the same trick as above to obliviously move real blocks in source buckets to

their sibling buckets. However, since the non-leaf sibling buckets are guaranteed to be empty due to

previous evictions passing on them (see Lemma 4), this process can be further optimized as discussed

in [54] as follows. For each non-leaf sibling bucket in the eviction path, the client simply requests

servers to copy all the data in the source bucket to the sibling bucket (line 19) and then, updates

locally the path location of blocks in the position map (pm) accordingly (line 9–10). For the leaf

sibling bucket, since it is not guaranteed to be empty at any time, we use the matrix permutation

to move blocks from the source bucket to it as described above. This optimization can halve the

client-server and server-server bandwidth cost as well as the server computation. Generally, we can

see that our eviction approach requires only one client-server communication and guarantees that all

data after eviction are consistently “encrypted” by degree-t polynomials. Figure 4.13 visualizes this

new SSS-based Triplet Eviction strategy.
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S3ORAMO.EvictAlongPath(v):
Let (u1, . . . , uH) be the (ordered) indexes of source buckets along the eviction path v
Client:
1: for h = 1, . . . , H do
2: Let Ih be a 2Z × Z matrix, set Ih[∗, ∗]← 0
3: for each real block with id in the source bucket T[uh] do
4: if id can legally reside in the destination bucket of T[uh] then
5: (pid, pIdx)← pm[id]
6: Let y (1 ≤ y ≤ Z) be the index of an empty slot in the destination bucket of T[uh]
7: Ih[x][Z + y]← 1, where x← pIdx mod Z
8: pm[id′].pIdx← Z · h+ y # Update the new location of the block in the path
9: else# id can legally reside in the sibling bucket of T[uh]
10: pm[id].pIdx← pm[id].pIdx + Z

11: for each real block with id′ in the destination bucket of T[uh] do
12: Ih[x+ Z][x]← 1, where x← pm[id′].pIdx mod Z

13: JIh[x, y]K(t)
1 , . . . , JIh[x, y]K(t)

` ← SSS.Create(Ih[x, y], t) for 1 ≤ x ≤ 2Z, 1 ≤ y ≤ Z
14: Repeat lines 2–13 (excluded lines 9-10) to create JI′HK, the share of permutation matrix for source to sibling

bucket at the leaf level (h = H)
15: Send (JI′HK(t)

i , JI1K(t)
i , . . . , JIHK(t)

i ) to Si, for 1 ≤ i ≤ `
Server: each Si ∈ {S1, . . . , S`} receiving (JI′HK(t)

i , JI1K(t)
i , . . . , JIHK(t)

i ) do
18: for h = 1, . . . , H do
19: Copy all data from source bucket JT[uh]K(t)

i to its non-leaf sibling bucket
20: for j = 1, . . . ,m do
21: Let Jch,jK

(t)
i be a vector containing j-th chunks of JT[uh]K(t)

i and its destination bucket
22: Jĉh,jK

(t)
i ← Jch,jK

(t)
i ? JIhK

(t)
i

23: Update j-th chunks of the destination bucket of JT[uh]K(t)
i with Jĉh,jK

(t)
i

24: for j = 1, . . . ,m do
25: Let Jc′H,jK

(t)
i be a vector containing j-th chunks of source bucket JT[uH ]K(t)

i and its (leaf) sibling bucket
26: Jĉ′H,jK

(t)
i ← Jc′H,jK

(t)
i ? JI′HK(t)

i

27: Update j-th chunks of the sibling bucket of JT[uH ]K(t)
i with Jĉ′H,jK

(t)
i

Figure 4.14: S3ORAMO triplet eviction with SSS scheme and SMM protocol.

We analyze the cost of S3ORAMO pertaining to the block size (|b|), number of blocks (N),

and statistical security parameter (λ). We consider other system parameters (e.g., prime field Fp,

number of servers `) to be fixed.

In the S3ORAMO retrieval phase, each PIR query being sent to ` servers is of size (Z ·

(H + 1) · dlog2 pe) bits. The client exchanges one block of size |b| with each server. The Triplet

Eviction is performed after every A subsequent retrievals. In this operation, the client sends H + 1

permutation matrices to ` servers. Each matrix is of size 2Z2 · dlog2 pe bits. The servers exchange

the shares of H + 1 buckets with each other, each being of size Z · |b| bits. Therefore, given
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H = O(logN), Z = A = O(λ) and `, p are constants, the amortized client-server communication

complexity is O(|b|+λ · logN). The amortized server-server communication overhead is O(|b|· logN).

The client bandwidth blowup is defined as the ratio between the cost of client-server

communication by using ORAM to access the block vs. the base case where the block is insecurely

accessed without ORAM. Our analyzed communication complexity of S3ORAMO above indicates that

the size of the PIR query and the permutation matrices is independent of the block size parameter |b|.

Therefore, the O(1) client bandwidth blowup can be achieved in S3ORAMO by selecting a suitable

value of |b|. That is, by selecting |b|= Ω(λ · logN)6, S3ORAM achieves O(1) client bandwidth

blowup.

In the retrieval phase, the servers compute the dot product between the Z ·(H+1)-dimensional

PIR query vector and the block vector containing Z · (H + 1) blocks of size |b|. In the Triplet

Eviction phase, the servers compute H + 1 times the matrix product between a vector containing

2Z blocks of size |b| and a permutation matrix of size 2Z ×Z. The matrix product incurs re-sharing

and computing the degree reduction in the SMM protocol on Z · (H + 1) blocks each being of size

|b|. In total, the amortized server computation complexity is O(|b|·λ · logN).

The client executes the SSS.Create algorithm Z · (H + 1) times and 2Z2 · (H + 1) times

to create the PIR query and H + 1 permutation matrices, respectively. The client executes the

SSS.Recover and SSS.Create algorithms to reconstruct and re-share a block of size |b|, respectively.

Thus, the amortized client computation complexity is O(|b|+ logN).

S3ORAMO layout is a full binary tree of height H, which has a total of Z · (2H+1 − 1) slots

and can store up to N ≤ A · 2H−1 real blocks. Given A = Z = Θ(λ) for statistical security (see
6In the ORAM community, λ = O(logN) is commonly used. With this assumption, the block size in S3ORAMO is
Ω(log2 N)
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Lemma 4), the server storage blowup cost is O(1). Notice that the share of the value has the same

size as the value (i.e., no ciphertext expansion as in Onion-ORAM), the server storage of S3ORAM

is constant and does not increase after a sequence of access operations.

Similar to Onion-ORAM, S3ORAMO does not require the stash component since the retrieved

block is immediately written back to the root bucket. Hence, the client block storage in S3ORAMO

is O(1). The client locally stores the position map whose cost is O(N · (logN + log logN)).

For theoretical interest, S3ORAMO can achieve (in total) O(1) client storage by storing the

position map in smaller ORAMs using the recursion technique in [168] and the bucket metadata

structure in [54]. Specifically, for each bucket in the S3ORAMO tree, we create a metadata that stores

the current index (pIdx) and the assigned path (pid) of blocks residing in it. For each S3ORAM access,

the metadata of buckets along the retrieval/eviction path will be read first to get the path and the

location of blocks of interest. This information will be used to create the PIR query and permutation

matrices. Next, we construct a series of S3ORAMO structures S3ORAMO
0 , . . . , S

3ORAMO
logr N

, where

S3ORAMO
0 stores database blocks and each block j in S3ORAMO

i+1 stores the path information (pid)

of the blocks (j − 1)r, . . . , jr in S3ORAMO
i and r ≥ 2 is the compression ratio. We refer the reader

to [54, 168] for the detailed descriptions.

For simplicity, we assume that r = 2 and let H = logN be the height of S3ORAMO
0 . In

S3ORAMO
i (i ≥ 1), the size of meta-data is λ(H − i), the block size is 2(H − i+ 1), and the path

length is H − i. There are logN recursive levels so that the total bandwidth overhead for each

recursive S3ORAMO retrieval is λ
∑H−1

i=0 i2 +
∑H

i=1 2(H − i+ 1) = O(λ log3N). Due to amortization,

the asymptotic cost of eviction is similar to the retrieval as analyzed above. Therefore, to achieve

O(1) client bandwidth blowup, the block size of S3ORAMO
0 needs to be Ω(λ · log3N). So, using the
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recursion technique to get rid of the client position map increases the regular block size a factor of

O(log2N) and O(logN) communication rounds.

The regular block size in recursive S3ORAMO is a factor of log2N times larger than other

(recursive) tree-based ORAM schemes featuring O(logN) bandwidth (e.g., Path ORAM, Ring-

ORAM, Tree-ORAM) and (at least) logN times smaller than (recursive) tree-based ORAM with

O(1) bandwidth (e.g., Onion-ORAM [54], Bucket-ORAM [61], OVS [10]) due to the following reasons.

As analyzed above, to keep the original asymptotic communication overhead intact when applying the

recursion technique, the regular block size must be large enough to absorb the cost of transmitting

the blocks and the meta-data components from O(logN) small (recursive) ORAM structures. In

ORAM schemes with O(logN) bandwidth, since the size of small blocks in their recursive structures

is O(logN), the regular block size is Ω(log2N) to absorb the cost of downloading O(log2N) small

blocks (there is no meta-data component in these schemes). On the other hand, the regular block

size of O(1)-bandwidth ORAM schemes does not increase when applying the recursion, since it is

already larger than the total amount needed to absorb the cost of downloading the blocks and the

meta-data of small ORAM structures (e.g., Ω(log5N)-Ω(log6N) block size vs. Ω(log3N) needed).

Given that the recursion technique significantly increases the regular block size, it is recom-

mended to maintain the position map locally assuming that its size is small enough. This choice

allows the implementor to gain the full performance advantages that S3ORAM offers in practice.

4.4.2.3 S3ORAMC: S3ORAM with Low Server Computation

In this section, we present S3ORAMC, a S3ORAM scheme that achieves lower computational

complexity than S3ORAMO due to its smaller bucket size parameter Z (e.g., O(1) vs. O(λ)). The

price to pay for such achievement is that it requires maintaining the stash at the client-side to
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temporarily store blocks that cannot be pushed back to the tree due to the small bucket size. The

intuition of S3ORAMC is to implement the access protocol of Circuit-ORAM proposed by Wang et

al. [179] using the homomorphic properties of SSS as follows.

S3ORAMC has the same retrieval procedure like S3ORAMO scheme, where we leverage

SSS-based PIR Scheme to privately retrieve the block in the retrieval path of the S3ORAMC tree

(Figure 4.15).

S3ORAMC.read(id)

1: b← S3ORAMO.read(id)
2: return b

Figure 4.15: S3ORAMC retrieval subroutine.

S3ORAMC implements the eviction principle in Circuit-ORAM scheme with additive and

multiplicative homomorphic properties of SSS. Similar to S3ORAMO scheme, S3ORAMC selects a

deterministic eviction path following the reverse lexicographical order (Equation 4.6) proposed in [71]

(Figure 4.16), which was proven to achieve the negligible overflow probability with a lower bucket

size parameter compared with the random path (e.g., 2 vs. 3). We note that the detail descriptions

of PrepareDeepest(v) and PrepareTarget(v) subroutines in Figure 4.16 can be found in [179].

Intuitively, the client first scans the position map to prepare the target array that indicates

which blocks to be pushed down to which levels in the eviction path. Afterward, the client goes

through each level of the eviction path, picks the desired block and drops it to the target level.

S3ORAMC.Evict():

1: v ← DigitReverse2(EvictCtr mod 2H)
2: Execute S3ORAMC.EvictAlongPath(v) protocol
3: EvictCtr← EvictCtr + 1 mod 2H

4: Repeat lines 1-3

Figure 4.16: S3ORAMC eviction subroutine.
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Figure 4.17: S3ORAMO eviction based on [179] using SSS and SMM protocol.

Notice that at any time, the client holds and drops at most one block. This policy is guaranteed by

computing a target array that indicates whether to pick/drop the block in each level by scanning the

position map. We refer the reader to [179] for the detailed description and explanation.

Figure 4.17 visualizes the high-level idea of the eviction in S3ORAMC, which implements

the push-down strategy in [179] using SSS and SMM protocol. Figure 4.18 describes the detailed

algorithm with the high-level idea as follows. For each level (h) in the eviction path, the client

creates a permutation matrix (Ih) of size (Z + 1)× (Z + 1). We use the last column of the matrix

(Ih[∗][Z + 1]) to indicate the block to be picked, while the other columns Ih[∗][j] ( 1 ≤ j ≤ Z) is to

indicate the block to be moved to or hold at j-th slot of the h-leveled bucket. The data vector JchK,

which will be computed the matrix product with Ih, is of size Z + 1 containing the holding block

(Jch[1]K) and the data from Z slots of the h-leveled bucket (Jvh[2]K . . . , Jvh[Z + 1]K). So, the client

sets Ih[x][Z + 1]← 1 to pick the block at slot x (line 15), and Ih[1][x]← 1 to drop the holding block

to the x-th slot of the h-leveled bucket (line 10). If the currently holding block is moved to the next

level (i.e., no pickup/drop-off at this level), the client sets Ih[1][Z + 1] ← 1 (line 13). Similar to

S3ORAMO scheme, the client sets Ih[x+ 1][x]← 1 to keep blocks indexed x in the h-leveled bucket

in position (lines 17-20). Finally, the client creates the SSS-shares for such permutation matrices
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S3ORAMC.EvictAlongPath(v):
Let (u1, . . . , uH+1) be the (ordered) bucket indexes along the eviction path v from the root to the leaf level
Client:
1: (deepest, deepestIdx)← PrepareDeepest(v); target← PrepareTarget(v)
2: hold← ⊥, dest← ⊥, (c1, . . . , cm)← 0|b|

3: if target[0] 6= ⊥ then # target[0] and deepestIdx[0] denote the stash component
4: hold← deepestIdx[0], dest← target[0]
5: (c1, . . . , cm)← S[hold], S[hold]← {}
6: for h = 1, . . . , H + 1 do
7: Let Ih be a (Z + 1)× (Z + 1) matrix, set Ih[∗, ∗]← 0.
8: if hold 6= ⊥ then
9: if i = dest then # Drop the holding block to this level
10: Ih[1][x]← 1 where x is the index of an empty slot in the bucket T[uh]
11: hold← ⊥, dest← ⊥
12: else# Move the holding block to the next level
13: Ih[1][Z + 1]← 1

14: if target[i] 6= ⊥ then # Pick a block at this level
15: Ih[x][Z + 1]← 1 where x← deepestIdx[h]
16: hold← x, dest← target[i]

17: for each real block id in T[uh] do # Hold the position of other real blocks at this level
18: x← pm[id].pIdx mod Z
19: if x 6= deepestIdx[h] then
20: Ih[x+ 1][x]← 1

21: JIh[∗, ∗]K(t)
1 , . . . , JIh[∗, ∗]K(t)

` ← SSS.Create(Ih[∗, ∗], t) for 1 ≤ h ≤ H + 1

22: (JcjK(t)
1 , . . . , JcjK(t)

` )← SSS.Create(cj , t) for 1 ≤ j ≤ m
23: Send

(
〈Jc1K(t)

i , . . . , JcmK(t)
i 〉, 〈JI1K(t)

i , . . . , JIH+1K(t)
i 〉
)
to Si, for 1 ≤ i ≤ `

Server: each S ∈ {S1, . . . , S`} receiving (〈Jc1K, . . . , JcmK〉, 〈JI1K, . . . , JIH+1K〉) do
18: JxKj ← JcKj for 1 ≤ i ≤ m
19: for h = 1, . . . , H + 1 do
20: for j = 1, . . . ,m do
21: Let Jch,jK be a Z-dimensional vector containing j-th chunks of bucket JT[uh]K
22: Jĉh,jK := (JxjK, Jch,jK) # Concatenate JxjK with Jch,jK resulting in a (Z + 1)-dimensional vector
23: Jĉ′h,jK← Jĉh,jK ? JIhK
24: (Jc′h,jK, JxjK) := Jĉ′h,jK # Assign the last component of vector Jĉ′Kh,j to JxjK
25: Update j-th chunks of bucket JT[uh]K with Jc′h,jK

Figure 4.18: S3ORAMC eviction protocol based on [179].

(line 21) and for the block being picked-up in the stash (if any) (line 22), and distributes the shares

to the corresponding servers (line 23). Similar to S3ORAMO, for each level in the eviction path,

the servers jointly perform the matrix product between the share of data vector and the share of

permutation matrix via local addition and the secure multiplication protocol (line 23), and update

the bucket with the newly computed vector (line 25).
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Similar to S3ORAMO, we analyze the cost of S3ORAMC regarding the block size (|b|), number

of blocks (N), and statistical security parameter (λ), while other system parameters (e.g., prime

field Fp, number of servers `) are treated as constants. S3ORAMO has the same tree layout, an

identical retrieval phase and a similar eviction procedure with the S3ORAMO scheme. S3ORAMC

only differs from S3ORAMO in terms of the bucket size parameter (Z) and the eviction frequency,

which happens after every retrieval instead of A as in S3ORAMO. S3ORAMC also incurs at most

three blocks (one for retrieval and two for eviction) to be transmitted in each ORAM access. Given

Z = O(1) in S3ORAMC, we summarize the asymptotic cost of S3ORAMO as follows.

The client-server communication complexity is O(|b|+ logN). The server-server communica-

tion overhead is O(|b|· logN). To achieve O(1) client-server bandwidth blowup, the minimal block

size is Ω(logN), which is a factor of λ times smaller than that of S3ORAMO.

The server computation is O(|b|· logN). The client computation complexity is O(|b|+ logN).

S3ORAMC layout is a full binary tree of height H, which has a total of Z · (2H+1 − 1) slots

and can store up to N ≤ 2H real blocks. Since Z = O(1), the server storage blowup in S3ORAMC

is O(1) similar to S3ORAMO asymptotically, but its constant overhead factor is smaller (i.e., 2

vs. 8). The client requires to maintain the stash, which costs O(λ) to achieve negligible overflow

probability. The position map costs O(N(logN + log logN)). Therefore, the total client storage is

O(λ+N(logN + log logN)). It is possible to achieve O(1) client storage by storing the stash (via

SSS shares) on the servers and using the recursion technique to keep the position map in smaller

ORAMs. However, this will significantly increase the computation and communication overhead for

oblivious access to the stash and the position map, respectively.

92



www.manaraa.com

4.4.3 Security Analysis

In this section, we analyze the security of two S3ORAM schemes. First, S3ORAMO follows

the Triplet Eviction strategy originally proposed in Onion-ORAM [54]. Therefore, it achieves the

same failure probability with Onion-ORAM. We refer the reader to [54] for the detail of the proof.

Lemma 4 (S3ORAMO Bucket Overflow Probability). If Z ≥ A and N ≤ A · 2H−1, the probability that

a bucket overflows after a Triplet Eviction operation is bounded by e−
(2Z−A)2

6A , where Z = A = Θ(λ).

Proof. We refer the reader to [54].

It is easy to see that Lemma 4 implies the following fact.

Corollary 3 (Non-Leaf Destination Bucket Load). All non-leaf destination buckets are always empty

after the Triplet Eviction takes place, except with a negligible probability.

We present the main security of S3ORAMO as follows.

Theorem 3 (S3ORAMO Security). S3ORAMO is correct and information-theoretically (statistically)

t-secure by Definition 7.

Proof. S3ORAMO is correct iff (i) the S3ORAMO.read(·) protocol returns the correct value of the

retrieved block and (ii) the S3ORAMO.Evict(·) function is consistent.

For each data request x, let b be the block to be retrieved and j be the location of b in its

path (i.e., j := pm[id].pIdx where id is the identifier of b). The share of the PIR query for server Si is

of form: JeK(t)
i = (JeK(t)

1 , . . . , JeK(t)
n ), where n = Z · (H + 1) and ei = 0 for 1 ≤ i 6= j ≤ n, ej = 1. Let

JcuK = (Jcu1K, . . . , JcunK) be the vector consisting of the share of u-th chunks taken from Z slots in

every bucket residing in the retrieval path. For 1 ≤ u ≤ m, the answer of each server Si is of form:
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JeK(t)
i · JcuK

(t)
i =

n∑

k=1

(
JekK(t) · Jcu,kK(t)

)

=
n∑

k=1

Jek · cu,kK(2t) by Equation 4.3

= Jcu,jK(2t) by Equation 4.1

By SSS scheme, at least 2t+ 1 shares are required to recover the secret hidden by a random 2t-degree

polynomial. Our system model presented in §4.4.1 follows this and, therefore, the client always

computes the correct value of chunk ct by ct ← SSS.Recover(JctK(2t)
1 , . . . , JctK(2t)

` , 2t). Since all chunks

of b are correctly computed, b is properly retrieved with the probability 1.

Corollary 3 shows that the root bucket is empty after the triplet eviction. The client writes

the retrieved block to an empty slot in the root bucket sequentially (line 3, Figure 4.12). Since

Z ≥ A, the root always has enough empty slots to contain all the blocks to be written before the

triplet eviction happens, thereby avoiding the overwritten and inconsistency issues. After A accesses,

the client executes the triplet eviction algorithm (Figure 4.14) to move blocks from upper levels (e.g.,

root) to deeper levels (e.g., leaf). Corollary 3 also shows that non-leaf sibling buckets are empty due

to previous triplet evictions and, therefore, they can contain all data moved from their source bucket

without creating any inconsistency issue. Real blocks from source buckets are moved to destination

buckets via matrix products. These computations are correct due to homomorphic properties of

two-share addition and multiplication offered by SSS and the SMM protocol, respectively, which

were proven correct in [68].

We now prove the security of S3ORAMO as follows.

Given a request sequence x of length q, where xj = (opj , idj , dataj) as in Definition 7, let

S3ORAMO
i (x) be the S3ORAMO client’s sequence of interactions with the server Si including a
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sequence of retrievals (Figure 4.11), write-to-root (line 3, Figure 4.12) and triplet eviction operations

(Figure 4.14). We have that the write-to-root operation is deterministic, which is performed right

after the retrieval. In this operation, the previously retrieved block is written to a publicly known

slot in the root bucket as shown above. The triplet eviction is also deterministic, which is performed

after every A successive accesses regardless of any data being requested. Since all these operations

(i.e., retrieval, write-to-root, triplet eviction) are independent of each other, they can be considered

as separate sequences observed by Si in S3ORAMO
i (x) as follows

S3ORAMO
i (x) =





−→
R i(x) = (R

(x1)
i , . . . , R

(xq)
i )

−→
W i(x̃) = (W

(x̃1)
i , . . . ,W

(x̃q)
i )

−→
E i(x̄) = (E

(x̄1)
i , . . . , E

(x̄q/A)

i )

, (4.7)

where
−→
R i(x̃),

−→
W i(x̃) and

−→
E (x̄) denote the retrieval, write-to-bucket and triplet eviction sequences,

given a data access sequence x, respectively.

Assume that there is a coalition of up t servers {Si∈I} sharing their own transcripts with each

other. Let I ⊆ {1, . . . , `} such that |I|≤ t. The view of {Si∈I} can be derived from Equation 4.7 as

{S3ORAMO
i∈I(x)} =





{−→R i∈I(x)} = ({R(x1)
i∈I }, . . . , {R

(xq)
i∈I })

{−→W i∈I(x̃)} = ({W (x̃1)
i∈I }, . . . , {W

(x̃q)
i∈I })

{−→E i∈I(x̄)} = ({E(1)
i∈I}, . . . , {E

(q/A)
i∈I })

,

We show that for any two access sequences x and x′ of the same length (i.e., |x|= |x′|), the pairs

〈{−→R i∈I(x)}, {−→W i∈I(x̃)}, {−→E i∈I(x)}〉 and 〈{−→R i∈I(x
′)}, {−→W i∈I(x̃

′)}, {−→E i∈I(x̄
′)}〉 are identically dis-

tributed.
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For each access request xj ∈ x, {Si∈I} observes a transcript {R(xj)
i∈I } consisting of a retrieval

path Pxj (access pattern), which is identical for all servers (line 4, Figure 4.11) and all data generated

by the SSS-based PIR scheme (lines 5-7).

The access pattern of S3ORAMO is identical to all other secure tree-based ORAM schemes.

Specifically, each block in S3ORAMO is assigned to a leaf bucket selected randomly and independently

from each other. Once a block is accessed, it is assigned to a new bucket leaf selected randomly and

independently. Such random assignment along with the selected bucket size parameter (Z) may

result in the bucket(s) in the S3ORAMO tree being overflowed with a negligible probability thereby,

impacts the security (see Lemma 4). Therefore, access patterns generated by any data request

sequences of the same length are statistically indistinguishable. We next analyze the probability

distribution of data observed at the server side in each S3ORAMO retrieval as follows. For each

retrieval, the client sends to the servers PIR queries generated by PIR.CreateQuery algorithm. Such

queries are SSS shares and, therefore, is t-private. The inner product is also t-private due to Lemma 2

with addition and partial multiplicative homomorphic properties by Equation 4.3 and Equation 4.1,

respectively. So, any data generated in S3ORAMO retrievals are identically distributed in the presence

of t colluding servers.

By these properties, for any data request sequence x, the corresponding transcripts (including

access patterns) generated in the S3ORAMO retrieval phase are information-theoretically (statistically)

indistinguishable from random access sequence in the presence of up to t colluding servers.

Data are written to slots in the root bucket according to the sequential order and, therefore,

the write pattern is deterministic and public. Such written data are SSS-shared with new random

polynomials so that they are t-private. Therefore, the write-to-root transcripts are identically

distributed.
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The access patterns of {E(j)
i∈I} and {E

(j′)
i∈I} are public because the triplet eviction is determin-

istic, which follows reverse lexicographical order like Onion-ORAM (e.g., [54]), We show that data

generated in such triplet evictions are identically distributed as follows. For each triplet eviction, the

client sends (H + 1) permutation matrices, which are SSS-shares and, therefore, they are all t-private

and uniformly distributed. Data in sibling buckets are t-private and uniformly distributed because

they are merely copied from source buckets deterministically (line 19, Figure 4.14). The matrix

product (line 22, Figure 4.14) is also t-private due to the security of SMM protocol by Lemma 3 .

Therefore, given two request sequences x, y with |x|= |y|, the corresponding deterministic triplet

eviction sequences observed by {Si∈I} are

{−→E i∈I(x̄)} = ({E(x̄1)
i∈I }, . . . , {E

(x̄q/A)

i∈I })

{−→E i∈I(ȳ)} = ({E(ȳ1)
i∈I }, . . . , {E

(ȳq/A)

i∈I })

where (x̄j , ȳj) ∈ {0, . . . ,H} for 1 ≤ j ≤ q/A. Since data yielded in {E(j̄j)
i∈I } and {E(x̄j′ )

i∈I } are

identically distributed for all (j, j′) ∈ {x̄1, . . . , x̄q/A} ∪ {ȳ1, . . . , ȳq/A} as shown above, {−→E i∈I(x̄)}

and {−→E i∈I(ȳ)} are identically distributed.

Given any data request sequence, S3ORAMO generates (i) access patterns statistically

indistinguishable from a random request sequence of the same length, and (ii) identically (uniform)

distributed data in the presence of up to t colluding servers. This indicates that S3ORAMO scheme

achieves information-theoretic statistical t-security according to Definition 7.

S3ORAMC follows the Circuit-ORAM eviction strategy [5] so that it inherits the same failure

probability as Circuit-ORAM as follows.
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Lemma 5 (S3ORAMC Stash Overflow Probability). Let the bucket size Z ≥ 2. Let st(S3ORAMC[s]) be

a random variable denoting the stash size of S3ORAMC scheme after an access sequence s. Then, for

any access sequence s, Pr[st(S3ORAMC[s]) ≥ R] ≤ 14 · e−R.

Proof. We refer the reader to [179].

The security of S3ORAMC is given in the following theorem.

Theorem 4 (S3ORAMC Security). S3ORAMC is correct and information-theoretically (statistically)

t-secure by Definition 7.

Proof. The correctness and security proof of S3ORAMC can be easily derived from that of S3ORAMO

scheme so that we will not present it in detail due to the significant overlap with the proof of

Theorem 3. Intuitively, S3ORAMC leverages the same principles as S3ORAMO, i.e., SSS-based PIR

scheme and permutation matrix, to implement the retrieval and eviction phases, which were proven

correct and consistent due to homomorphic properties of SSS and SMM protocol. We also proved

that all the data generated by these operations are t-private. The access pattern in S3ORAMC is

statistically indistinguishable due to its negligible stash overflow probability by Lemma 5. All these

properties indicate that S3ORAMC scheme achieves information-theoretic statistical t-security by

Definition 7.

4.4.4 Generalization of S3ORAM on k-ary Tree

It is possible to execute ORAM over a general k-ary tree layout to achieve a sub-logarithmic

asymptotic overhead (i.e., O(logkN), where k is a free parameter). Our proposed S3ORAM schemes

can also be easily extended to work over a general k-ary ORAM layout. However, we later show

that increasing the value of k does not bring much benefit to the actual performance of tree-based
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ORAM schemes. We present S3ORAMschemes on the general k-ary tree layout, and then provide

the analytical analysis to show that their cost achieves the best at k ∈ {2, 3} as follows.

4.4.4.1 k-ary S3ORAMO

We can leverage the concepts of SSS homomorphic computation and the permutation matrix

presented in §4.4.2.2 to implement the eviction strategy in [5], which is the generalization of the

Triplet Eviction used in S3ORAMO. Generally speaking, this strategy requires to organize each

bucket in the S3ORAMO k-ary tree layout into k slides, each being of size as a function of the security

parameter (i.e., O(λ)). In other words, Z = O(k · λ). Each bucket at the leaf level is connected

with a so-called auxiliary bucket of size O(λ). The eviction path for k-ary tree is determined by

modifying Equation 4.6 to output the order-reversal of base-k digits instead of the binary string.

Once the eviction path is determined, we travel from the root to the leaf and obliviously move

all blocks from the (non-leaf) source bucket to a deterministic slide of all of its children. At the

leaf level, we obliviously move all blocks from the leaf bucket to its corresponding auxiliary bucket.

All these oblivious moves can be implemented using the SSS matrix product principle described in

§4.4.2.2. Notice that in this context, the retrieval phase in S3ORAMO scheme remains unchanged.

4.4.4.2 k-ary S3ORAMC

S3ORAMC scheme in §4.4.2.3 supports the k-ary tree layout naturally without modifying the

retrieval and the eviction subroutines. We only need to change Equation 4.6 as similar to the k-ary

S3ORAMO scheme as discussed above to get the eviction path in the k-ary tree layout. It also only

requires to adjust the bucket size parameter (Z) to be a function of the tree degree to achieve a

negligible stash overflow probability. In other words, Z = O(k) for the statistical security.
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We now treat k as a parameter in the asymptotic cost. In this context, the bucket size

parameter (Z) is O(κ · λ) instead of O(λ). The k-ary S3ORAMO layout is a tree of height O(logkN).

The eviction in each level move all blocks from the source bucket of size O(κ · λ) to a slide (sized

O(λ)) of its k children buckets. Thus, the (amortized) client-server and server-server bandwidth

is O(|b|+λ · k · logkN) and O(|b|·λ · k · logkN), respectively. The (amortized) server and client

computation is O(|b|·λ · k · logkN) and O(|b|+k · logkN), respectively.

Similarly, we can easily derive the cost of k-ary S3ORAMC scheme, where the bucket size

now becomes Z = O(k). So, the client-server- and server-server-bandwidth of k-ary S3ORAMC

are O(|b|+k · logkN) and O(|b|·k · logkN), respectively. The server- and client-computation are

O(|b|·k · logkN) and O(|b|+k · logkN), respectively.

So, given that |b|, λ,N are unchanged in this context, the computation/bandwidth overhead

of k-ary S3ORAM schemes can be written as a function of k as

f(k) = α+ β · k · logkN = α+ β · k

ln k
· lnN, (4.8)

where α ∈ {0, |b|}, β ∈ {1, |b|, λ, λ · |b|}. Since k ≥ 2 and k ∈ N, it is easy to see that f(k) is minimal

at k = 3.

For k = 2, our S3ORAMO using the Triplet Eviction outperforms a constant factor of two

compared with using the generalization strategy in [5]. This is because in this case, each source

bucket only has one sibling bucket. Due to Equation 4.6, once a bucket is being treated as the

sibling bucket, it will be later considered as the destination bucket before being treated as the sibling

bucket again. Meanwhile, once the (non-leaf) bucket is treated the destination bucket, it is always

guaranteed to be empty after the eviction (see Corollary 3). In other words, the bucket is always
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empty before being considered as the sibling bucket and, therefore, given a fixed size of O(λ), it

always has enough slots to keep the expected load below its capacity. The eviction in [5] does not

exploit this special role-switching when k = 2, but focuses on the general case for any k > 2, where

one bucket must serve as the sibling bucket k− 1 times before being empty. As a result, each bucket

must have k slides each being of size O(λ), and the eviction only touches one slide of the bucket to

achieve the sub-logarithmic overhead. Therefore, when k = 2, its (eviction and retrieval) overhead is

doubled compared with that of the Triplet Eviction. Moreover, given the fact that the generalization

eviction with k = 3 only gains 6% improvement over k = 2, while its k = 2 case is two times less

efficient than the Triplet Eviction as shown above, we conclude that the S3ORAMO achieves the best

performance with k = 2 and the Triplet Eviction strategy.

For S3ORAMC scheme, it achieves the best performance at k = 3 according to Equation 4.8.

This is because it supports k-ary layout naturally without modifying eviction and retrieval subroutine

but only adjusting the bucket size parameter. We further demonstrate empirical results to support

such analytical analyses in §4.4.5.6.

4.4.5 Experimental Evaluation

4.4.5.1 Implementation

We fully implemented two S3ORAM schemes in C++ consisting of roughly 5,000 lines

of code. We used two external libraries in our implementation: (1) The Shoup’s NTL library

v9.10.07 for the pseudo-random number generation and arithmetic operations due to its low-level

optimization for modular multiplication and cross product functions; (ii) the ZeroMQ library8 for

the network communication. Our implementation supports parallelization via multi-threading to
7Available at http://www.shoup.net/ntl/download.html
8Available at http://zeromq.org
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take full advantage of multi-core CPUs at the server side. We also implemented k-ary tree layout

generalization for both S3ORAM schemes. The implementation of our S3ORAM framework is publicly

available at https://github.com/thanghoang/S3ORAM.

We first describe the configuration and methodology to conduct our experiments as follows.

4.4.5.2 Configuration and Methodology

We used a 2015 Macbook Pro laptop as the client, which was equipped with an Intel Core i5-

5287U CPU @ 2.90GHz and 16 GB RAM. On the server-side, we used Amazon EC2 with c4.4xlarge

type to deploy three server instances. Each server was running Ubuntu 16.04 and equipped with 16

vCPUs Intel Xeon E5-2666 v3 @2.9 GHz, 30 GB RAM and 1TB SSD.

We located three servers to be geographically close to each other (same region) as well as

to our client machine, which results in the network latency between them being approximately 15

ms. The servers were connected to each other via a dedicated network whose throughput for both

download and upload is approximately 1 Gbps. The client used Wi-Fi connecting to the Internet

via a home data plan, which offers the latency of 20 ms and the download/upload throughput of

55/6 Mbps to the servers.

We evaluated the performance of all ORAM schemes with a randomly generated database of

size from 0.5 GB to 40 GB and block sizes from 4 KB to 1024 KB.

We selected Path-ORAM [169] and Onion-ORAM [54] as the main counterparts of S3ORAM

framework since the former is the most optimal O(logN)-bandwidth ORAM (without server compu-

tation) while the latter achieves O(1) bandwidth blowup (with server computation). We also chose

Ring-ORAM [150] as it is an efficient O(logN)-bandwidth ORAM scheme with server computation.
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We consider all ORAM schemes (including our S3ORAM framework) under their non-recursive form,

where the position map is stored locally at the client. This is because storing the position map

at the server will incur O(logN) number of communication rounds of accessing O(logN) smaller

S3ORAM, which may result in high overhead. In practice, it is likely that the position map is

small enough to be stored locally at the client. Moreover, since S3ORAM is only secure in the

semi-honest setting, we only compared its performance with the semi-honest version of Path-ORAM,

Ring-ORAM and Onion-ORAM. We did not consider alternatives that (i) failed to achieve O(1)

client communication blowup but incurred more delay (e.g., [52, 130]), (ii) were shown to be insecure

(e.g., [131, 132]), or (iii) incurred more cost than the selected ORAM counterparts above regarding

to our configuration and experimental settings (e.g., [10]). We also did not explicitly compare the

performance of S3ORAM against the multi-server ORAM scheme in [166] because of the major

difference in terms of client block storage between the two schemes (O(1) vs. O(
√
N)). Given a very

large outsourced database, the storage required by [166] might not be suitable for resource-limited

devices such as a mobile phone. Moreover, if O(
√
N) block storage is acceptable, then the lower

bound in [5] might imply a better ORAM strategy than our S3ORAM schemes, in which leveraging

only PIR technique suffices to achieve O(1) client bandwidth blowup.

We present the parameter choice and methodology to measure the performance of S3ORAM

schemes and their counterparts as follows.

• S3ORAM: For the S3ORAMO scheme, we selected the bucket size Z = 74 and A = Z/2 = 37

and to achieve the negligible overflow probability of 2−80 by Lemma 4. We measured the cost

for each S3ORAMO access as the retrieval delay plus the write-to-root delay plus the amortized

delay of the eviction operation. For the S3ORAMC scheme, we selected the bucket size Z = 2
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suggested in [179] for the negligible stash overflow probability by Lemma 5. We also investigated

the performance of S3ORAM framework with k-ary structure, where k > 2. In this case, we fixed

the database size and varied the tree height (H) and the bucket size (Z) parameters. (see §4.4.5.6

for the detailed configuration).

• Path-ORAM: We selected the bucket size Z = 4 to achieve the negligible stash overflow probability

of 2−80. We measured the delay of Path-ORAM as the time to download and upload 4 · log2N

blocks plus the delay of IND-CPA decryption and re-encryption of these blocks at the client. We

used libtomcrypt9 to implement AES-CTR as the IND-CPA encryption.

• Ring-ORAM: We selected Ring-ORAM parameters (i.e., Z = 16, S = 25 and A = 20) as stated

in [150] for a negligible stash overflow probability of 2−80. We measured the delay of Ring-ORAM

as the total time of (i) one block transmission, (ii) XOR and IND-CPA encryption/decryption

operations at the client, (iii) XOR operations at the server and (iv) the amortized cost of eviction

and early shuffles based on the formula (H + 1)(2Z + S)/A · (1 + PoissCDF(S,A)) given in [150].

• Onion-ORAM: We selected the size of RSA modulus to be 1024 bits for AHE according to

[9]. We selected the bucket size and the eviction frequency of Onion-ORAM as Z = 74 and

A = Z/2 = 37 for the negligible bucket overflow probability of 2−80. We measured the overall

delay of Onion-ORAM as the time to (1) perform homomorphic computations at the client and

server and (2) transfer O(1) blocks and PIR queries, plus the amortized cost of eviction operation.

Since Onion-ORAM is extremely computationally costly, measuring its delay even on a medium

database takes an insurmountable amount of time. Therefore, we only measured its delay on a

small database (i.e., 1 MB) first, and then extrapolate the delay for larger database sizes.

9Available at https://github.com/libtom/libtomcrypt
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Table 4.3: Amount of data to be sent by the client and processed by the server(s).

# Blocks
Retrieval Phase Eviction Phase

Query Size (KB) # Computed Blocks Permutation Matrix Size (KB) # Computed Blocks
S3ORAMO S3ORAMC S3ORAMO S3ORAMC S3ORAMO S3ORAMC S3ORAMO S3ORAMC

103 4.05 0.17 518 20 598.93 1.55 76,664 198
104 6.36 0.23 814 28 941.19 2.11 120,472 270
105 8.09 0.28 1,036 34 1,197.88 2.53 153,328 324
106 9.82 0.33 1,258 40 1,454.56 2.95 186,184 378
107 12.14 0.39 1,554 48 1,796.81 3.52 229,992 450
108 13.88 0.44 1,776 54 2,053.50 3.94 262,848 504
109 15.61 0.48 1,998 60 2,310.19 4.36 295,704 558

4.4.5.3 End-to-End Delay

We first present the analytical communication and computation overhead of S3ORAM schemes

with databases containing a various number of data blocks in Table 4.3. We can see that the size

of the retrieval query and permutation matrices by the client as well as the amount of the data to

be computed by the server are much lower than S3ORAMO for each access. This is mainly because

S3ORAMC has a much smaller bucket size than S3ORAMO (i.e., 2 vs. 74). However, the eviction in

S3ORAMO is only performed after every 37 accesses compared with one in S3ORAMC scheme. In

fact, this accumulative strategy allows S3ORAMO to be less impacted by the network congestion

control (i.e., TCP slow-start) and the client-server/ server-server communication latency than

S3ORAMC. Moreover, S3ORAMO incurs only one block to be uploaded per access compared with

two in S3ORAMO scheme. All these factors result in the amortized end-to-end delay of S3ORAMO

scheme being comparable with the actual delay of S3ORAMC as shown in Figure 4.19, even though its

analytical overhead looks worse than that of S3ORAMC. We also show in Figure 4.19 the simulated

delay of S3ORAM counterparts with different database sizes (from 0.5 to 40 GB) and block sizes

(128KB and 256KB). Both S3ORAM schemes took only 1.3-1.4 (resp. 2.1-2.7) seconds to access

a 128KB (resp. 256KB) block in the database of size up to 40 GB. This resulted in S3ORAM

schemes being approximately 9.3 and 6.4 times faster than Path-ORAM and Ring-ORAM, where

they took 7-14 (resp. 14-26) seconds for each 128KB (resp. 256KB) block access. Compared with
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Figure 4.19: Delay of S3ORAM and its counterparts on a laptop with home network.

Onion-ORAM, our S3ORAM schemes were three orders of magnitude faster. This is mainly due to

the fact that S3ORAM schemes only rely on simple arithmetic operations (e.g., modular addition/

multiplication), while Onion-ORAM leverages Partially/Fully HE (see §4.4.5.4). One might also

observe from Figure 4.19 that choosing a larger block size has a small impact on the delay of S3ORAM

schemes. This is clearly illustrated in Figure 4.20, where we present the impact of block size on

the end-to-end delay of S3ORAM schemes compared with their counterparts. Given any block size

ranging from 4 KB to 1024 KB, S3ORAM schemes always maintain a constant factor of 9.3 and

6.4 times faster than Ring-ORAM and Path-ORAM, respectively. This presents an advantage to

S3ORAM schemes over their counterparts for applications requiring large block sizes such as image

or video storage services.

4.4.5.4 Cost Breakdown Analysis

In this section, we dissect the overall delay of S3ORAM to explore the factors that contribute

the most to the total delay. Figure 4.21 shows the detailed cost factors of two S3ORAM schemes
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Figure 4.20: Delay of S3ORAM for varying block sizes for a 40GB DB.

according to 0.5-40 GB DB with 128KB blocks. There are five factors that affect the overall delay

of S3ORAM schemes as follows.

1. Client computation: In both S3ORAM schemes, the client computed the SSS shares of the

retrieval query and the permutation matrices, recovered the requested block and re-shared the

block with SSS. All these incurred only some modular addition and multiplication operations.

These computations are extremely lightweight so that the client computation contributed only

a minimal amount to the total delay (i.e., < 1%), which is hard to observe in both Figure 4.21a

and Figure 4.21b.

2. Server computation: In both S3ORAM schemes, the servers computed the ORAM tree data with

the retrieval query via the dot product and with permutation matrices via the matrix product,

which also incurred a series of modular addition and multiplication operations. However, unlike

the client computation, the cost of these operations at the server-side depends on the block

size. As a result, the server computation contributed a higher amount to the total delay (i.e.,

7-11%) than the client computation. Compared between two S3ORAM schemes, we can see

107



www.manaraa.com

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5
1

2.5
5

10
20
40

Delay (s)

D
B

si
ze

(G
B
)

Client computation
Server computation
Client-server communication (query & matrix)

(a) S3ORAMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0.5
1

2.5
5

10
20
40

Delay (s)

D
B

si
ze

(G
B
)

Client-server communication (block)
I/O Access
Server-server communication

(b) S3ORAMO

Figure 4.21: Detailed cost breakdown of S3ORAM on a laptop with home network.

that S3ORAMO had a higher server computation delay than S3ORAMC scheme. This is because

the block size of S3ORAMO is much larger than S3ORAMC (i.e., 74 vs. 2), which significantly

impacts the SSS-based PIR computation in the retrieval phase.

3. Client-server communication: In both S3ORAM schemes, this operation contributed the most

to the total delay (over 90%). For each S3ORAM access, the client downloaded one block from

the servers and uploaded 1-2 blocks along with one retrieval query and some permutation

matrices. We can observe from Figure 4.21 that the time to upload the retrieval query and

permutation matrices (yellow-patterned green bars) was much faster than the time to download

and upload a 128KB data block (unpatterned green bars). This clearly reflects the theoretical

insight of S3ORAM schemes, where the client communication overhead is constant and mostly

dominated by the data block with the poly-logarithmic size. We can also observe that S3ORAMO

(Figure 4.21b) took a longer time to transmit the retrieval query and permutation matrices

than S3ORAMC (Figure 4.21a). This is because the bucket size parameter in S3ORAMO scheme

is much larger than in S3ORAMC as explained above, which impacts the size of the retrieval
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vector and the eviction matrices. On the other hand, the block transmission time in S3ORAMC

was doubly slower than in S3ORAMC. This is because the eviction in S3ORAMC requires to

transmit two blocks for each access, compared with only one in S3ORAMO.

4. I/O access: Due to the cache miss issue and the infrastructure of the selected Amazon EC2

instances (i.e., c4.4xlarge), the disk I/O access caused a considerable delay especially in

S3ORAMO scheme. Specifically, we stored the S3ORAM tree in a network storage unit called

“Elastic Block Storage” (EBS), which was connected to Amazon EC2 computing unit with

a maximum throughput of 160 MB/s. This resulted in the I/O access being limited by this

throughput, and therefore, causing a high delay. To reduce the I/O access overhead, one solution

is to store the S3ORAM tree structure on a local storage unit with high throughput (e.g., NVMe).

Another solution is to apply a caching strategy, where h-top levels of the S3ORAM tree are

stored directly on RAM. As explained above, S3ORAMO has a larger bucket size than S3ORAMC

so that its reported I/O delay was higher than S3ORAMC.

5. Server-server communication: This overhead was caused by the SMM protocol when the servers

performed the matrix product operation in the eviction phase. In S3ORAMO scheme, the

reported communication delay between the servers was very low, and significantly faster than in

S3ORAMC scheme. This is because of the amortization in S3ORAMO scheme, where the eviction

was performed after every A = 37 subsequent retrievals. This context allowed the network

latency (i.e., 15 ms) to be amortized and minimized the impact of the TCP slow start scheme.

In S3ORAMC, the eviction must be performed right after each retrieval so that its reported

delay was significantly impacted by those factors.
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4.4.5.5 The Impact of Network Quality

We first investigated the impact of inter-server network quality on the performance of

S3ORAM schemes. In this setting, we set up three Amazon EC2 servers to be geographically distant

to each other (in the form of a triangle between California, Ohio and Central Canada regions). The

average network round-trip latency and throughput between the servers were 78 ms and 295 Mbps,

respectively. The round-trip latency between the client and the farthest server was 80 ms, while the

client throughput to all servers remained unchanged (i.e., 55/6 Mbps of download/upload speed).

Figure 4.22 presents the delay of S3ORAM in this setting compared with the previous one. We

can see that S3ORAM schemes performed 0.3–2 s (2× at most) slower than in the original setting,

where all servers were in the same region and close to the client. This slowdown is mostly due to (i)

the higher latency and lower throughput of the inter-server network link and (ii) the latency when

the client communicates with the farthest server. However, as shown in Figure 4.22, S3ORAM still

outperformed the performance of Path-ORAM and Ring-ORAM in the original setting (i.e., server

was placed close to the client). This is because the server-server communication only contributed a

small fraction in the total delay, especially in S3ORAMO scheme (due to the amortization) as already

analyzed in §4.4.5.4. On the other hand, S3ORAM incurred only one communication round between

the client and the servers so that the impact of the client’s high round-trip latency was minimal.

Moreover, the client throughput remained unchanged and therefore, it did not impact much on the

delay of S3ORAM schemes in this context. We observed that S3ORAMC was more impacted by the

inter-server high network round-trip latency than S3ORAMO. This is because S3ORAMC performed

eviction right after each access, where the servers communicated with each other in O(logN) rounds.

Meanwhile, these rounds were performed once every A = 37 accesses in S3ORAMO and therefore,

their total latency was amortized.
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Figure 4.22: The delay of S3ORAM schemes with geographically distant servers.

Given that the low network quality at both client and inter-server sides did not impact much

on the delay of S3ORAM schemes, we now show that if the client can have a high-speed network

setting, our S3ORAM framework might no longer be an ideal choice. We conducted an experiment to

demonstrate that ORAM schemes featuring O(logN) bandwidth overhead are better than S3ORAM

after a certain threshold of network bandwidth. Figure 4.23 presents simulated performance of

S3ORAM schemes and their counterparts with different client network bandwidth settings regarding

40 GB database containing 128 KB blocks. With 1 Gbps inter-server network throughput (servers

were at the same region), Path-ORAM and Ring-ORAM surpassed S3ORAM schemes for a client

network throughput of approximately 720 Mbps and 380 Mbps, respectively (Figure 4.23a). Given

servers were set up geographically distant to each other, the corresponding numbers were 80-300

Mbps and 50-100 Mbps (Figure 4.23b). This is because Path-ORAM and Ring-ORAM feature

O(logN) bandwidth overhead so that they receive a more benefit from the high network speed. On

the other hand, S3ORAM schemes feature O(1) bandwidth overhead and therefore, get less benefit.
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Figure 4.23: The impact of client network throughput.

4.4.5.6 The Impact of k-ary Tree Layout

We performed an empirical analysis to confirm our finding in §4.4.4 that increasing the degree

of the ORAM tree receives very little benefit if not worse than the default setting (i.e., binary tree).

Figure 4.24 presents the actual end-to-end delay of S3ORAM schemes with varied tree degrees

under the fixed 1TB DB with 128 KB blocks configuration. We can see that the actual delay of k-ary

S3ORAM schemes likely matched with the expected overhead (the dash-dotted line). As discussed,

the performance of S3ORAMO following the generalized eviction in [5] achieved the best at k = 3
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Figure 4.24: The impact of tree degree.
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(the solid purple line). Remark that for the special case where k = 2, such generalized eviction did

not take into account the bucket load characteristic after each eviction for optimization. Meanwhile,

this characteristic was fully exploited in the Triplet Eviction strategy, which allowed reducing the

end-to-end delay by half (the solid purple point with the dashed purple line). In summary, considering

a little gain that k = 3 can offer and the optimization that can be done with k = 2, we can see that

S3ORAMO scheme achieved the best performance at the default setting (i.e., binary tree layout with

the Triplet Eviction). In S3ORAMC scheme, the actual performance followed closely to the analytical

result, which achieved the best performance at around k ∈ {3, 4, 5}. However, the gain was not so

considerable compared with k = 2 (i.e., < 6.5%). At k > 5, the delay of S3ORAMC scheme started

to increase and became worst than k = 2.

4.4.5.7 Storage Overhead

At the client-side, S3ORAMO does not require the stash component similar to Onion-ORAM.

On the other hand, S3ORAMC requires the stash of size O(λ · |b|) similar to Path-ORAM and Ring-

ORAM. Therefore, given a database containing 512 KB blocks, S3ORAMC scheme needs around

32-33 MB of the client storage for the stash, while S3ORAMO requires nothing. The storage cost for

the position map component in both (non-recursive) S3ORAM schemes is slightly higher than their

non-recursive counterparts. For instance, with a 16 TB database of 512-KB blocks (D = 33, 554, 432),

S3ORAM schemes cost 119 MB while the others (e.g., Onion-ORAM, Ring-ORAM, Path-ORAM)

cost 100 MB. This is because we store not only the path information but also the specific location of

each block in its assigned path.

At the server side, each server storage overhead in S3ORAMO scheme increases by a factor of

eight (i.e., (8D−A)·|b| bits) by Lemma 4. The server storage overhead for S3ORAMC scheme increases
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by a factor of two (i.e., 2D · |b|), which is equal to Circuit-ORAM. Recall that all S3ORAM schemes

need at least three servers. The server storage for Path-ORAM and Ring-ORAM is 4D · |b| bits and

6D · |b| bits, respectively. The server storage for Onion-ORAM is similar to S3ORAMO for one server

but will increase after a sequence of access operation due to the ciphertext expansion of Additively

HE.

We analytically compare S3ORAM schemes with state-of-the-art multi-server ORAM schemes

for data outsourcing. The most notable ORAM relevant to our framework is Multi-Cloud Oblivious

Storage (MCOS) [166] as it also features O(1) client communication overhead at the cost of O(logN)

server-server bandwidth overhead like S3ORAM. MCOS is better than S3ORAM in the several

aspects as follows. First, it does not require a minimal block size to achieve the constant client

communication overhead, while S3ORAM requires Ω(log2N) - Ω(log3N) block size. Second, it

needs two servers to operate while S3ORAMrequires at least three servers. The main downside

of MCOS over S3ORAMis that it requires the client to store O(
√
N) data blocks compared with

O(1)−O(logN). For instance, with 256TB database with 232 blocks, the client storage is 15 GB

(vs. {0, 8} MB in S3ORAM). Another distributed ORAM relevant to S3ORAM is the two-server

ORAM scheme by Lu and Ostrovsky et al. [126]. Due to the hierarchical ORAM paradigm [75], the

main advantage of this scheme is that the client does not need to maintain the position map and

the stash components as in partition-based and tree-based ORAM schemes including S3ORAM and

MCOS. However, it incurs O(logN) client communication overhead as opposed to S3ORAM and

MCOS. As a result, it can operate on any block size and all the servers do not need to communicate

with each other.
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4.5 MACAO: A Multi-Server ORAM Framework with Active Security

While S3ORAM enables desirable performance properties for the client such as low communi-

cation overhead and low delay, it only offers security against semi-honest adversary. In practice, it

is likely the active adversary may be present, who may deviate from the protocol to compromise

the user privacy and data integrity. To address this issue, we design MACAO, a comprehensive

MAliciously-secure and Client-efficient Active ORAM framework. MACAO harnesses suitable secret

sharing techniques, efficient eviction strategy along with information-theoretic Message Authen-

tication Code (MAC), which (i) offers integrity check, (ii) prevents malicious behaviors and (iii)

achieves a comparable efficiency to state-of-the-art ORAM schemes simultaneously. Our MACAO

framework comprises two main multi-server ORAM schemes: MACAOrss and MACAOspdz. We design

MACAOrss based on replicated secret sharing [105], which requires three servers and there is no

collusion among the servers (privacy level t = 1). On the other hand, MACAOspdz is built on SPDZ

secret sharing [51] following the preprocessing model, which can operate in the `-server setting

(` ≥ 2) with the optimal level of privacy (i.e., t = `− 1). We construct a series of authenticated PIR

protocols based on RSS and SPDZ and prove that they are secure against the malicious adversary.

Additionally, we propose several optimization tricks to reduce the bandwidth overhead at the cost of

reducing information-theoretic to computational security. Table 4.4 outlines some key characteristics

of MACAO compared with state-of-the-art ORAM schemes.

In summary, our main contributions are as follows.

• Multi-server active ORAM with security against active adversaries: MACAO offers data confi-

dentiality and integrity, access pattern obliviousness in the presence of malicious adversaries.
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Table 4.4: Summary of state-of-the-art ORAM schemes.

Scheme Bandwidth Overhead† Block
Size∗

Client
Block Storage‡ # servers§ Security Comp. over

Enc. DataClient-server Server-server
Ring-ORAM [150] O(logN) - Ω(1) O(logN) 1 Semi-Honest 7

CKN+18 [40] O(logN) - Ω(log2N) O(1) 3 Semi-Honest 7

GKW18 [77] O(logN) - Ω(1) O(logN) 2 Semi-Honest 7

S3ORAM[89] O(1) O(logN) Ω(log2N) O(1) 2t+ 1 Semi-Honest 3

Path-ORAM [169] O(logN) - Ω(1) O(logN) 1 Malicious 7

Circuit-ORAM [179] O(logN) - Ω(1) O(logN) 1 Malicious 7

SS13 [166] O(1) O(logN) Ω(log2N) O(
√
N) 2 Malicious 7

LO13 [126] O(logN) - Ω(1) O(1) 2 Malicious 7

Onion-ORAM [54] O(1) - Ω(log6N) O(1) 1 Malicious 3

MACAO (MACAOrss) O(1) O(logN) Ω(logN) O(logN)
3 Malicious 3

MACAO (MACAOspdz) t+ 1

†Bandwidth overhead denotes the number of blocks being transmitted between the client and the server(s) or between the servers.
∗This indicates the minimal block size needed to absorb the transmission cost of the retrieval query and the eviction instructions, thereby
achieving the desirable client-bandwidth overhead.
‡Client block storage is defined as the number of data blocks being temporarily stored at the client. This is equivalent to the stash component
used in [150, 169], which, therefore, does not include the cost of storing the position map of size O(N logN). Notice that all the ORAM
schemes in this table, except [77, 126], require such a position map component. However, we can apply recursive technique in [161] to store
the position map on the server at the cost of increasing a small number of communication rounds [161, 166].
§S3ORAM and MACAOspdz offer the property that allows a certain number of colluding servers in the system (privacy level t ≥ 1) by
increasing the number of servers. Other multi-server ORAM schemes do not offer this scalability (t = 1) efficiently, and require a fixed
number of servers.

MACAO enables the client to detect, with high probability, if the malicious server(s) has tampered

with the inputs/outputs of the protocol.

• Oblivious distributed file system applications and secure computation: Our MACAO framework

relies on secret sharing as the core building block, which offers additive and multiplicative

homomorphic properties. Therefore, after a block is accessed, it can be computed further directly

on the server(s). This property permits MACAO to serve as a core building block towards designing

a full-fledged Oblivious Distributed File System (ODFS) with secure computation capacity.

• Full-fledged implementation and performance evaluation: We fully implemented MACAO frame-

work and compared its performance with state-of-the-art ORAM schemes on real-cloud platforms

(i.e., Amazon EC2). Our experimental results confirmed the efficiency of MACAO, in which it is

up to seven times faster than single-server ORAMs. We provide detail cost analysis of MACAO

schemes in §4.5.3.5.
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In addition, it is important to point out that in the context of a multi-server active ORAM

scheme with malicious security, we also achieve the following important properties, previously only

attained in passive schemes in the semi-honest setting.

• Low client storage and communication overhead: MACAO offers O(1) client-bandwidth overhead,

compared with O(logN) of the most efficient passive ORAM schemes (e.g., [150, 169]). Moreover,

MACAO features a smaller block size than other active ORAM schemes that also achieve the

constant client-bandwidth blowup (e.g., S3ORAM [89], Onion-ORAM [54], Bucket-ORAM [61]).

Observe that while asymptotically comparable to [54, 61], in practice MACAO schemes are more

efficient since they feature a smaller block size.

• Low computational overhead at both client and server sides: In MACAO, the client and server(s)

only perform bit-wise and arithmetic operations (e.g., addition, multiplication) during the online

access. This is more efficient than other ORAM schemes requiring heavy computation due

to partially/fully HE [54]. MACAO offers up to three orders of magnitude improvement over

Onion-ORAM [54] thanks to the fact that all HE operations in MACAO are pre-computed in the

offline phase between the servers and independent of the client and on-line (read or eviction)

access phase. Therefore, the online access latency of MACAOspdz is not impacted by the delay

of HE. On the other hand, MACAOrss does not require any pre-computation or HE operations.

Due to the efficient computation at both client and server sides and the low client-bandwidth

overhead, MACAO achieves low end-to-end delay to access a large block in a large database in

real-world settings.

As a final remark, observe that we focus on oblivious access in the single-client setting, where

the client is fully trusted. This is in contrast to some of the distributed ORAM research targeting
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the fully distributed model, where there is no trusted party (i.e., client) at all [56, 59, 114, 181]. The

problem of multi-client access to ORAM as in [125, 128, 129, 158, 186] is also outside of the scope of

this study.

4.5.1 System and Security Models

4.5.1.1 System Model

Our system model consists of a client and ` servers (S0, . . . , S`−1). We assume that the

channels between all the players are pairwise-secure. That is, no player can tamper with, read, or

modify the contents of the communication channel of other players. We define a multi-server ORAM

scheme as follows.

Definition 8 (Multi-Server ORAM). A Multi-server ORAM scheme is a tuple of two PPT algorithms

ORAM = (Setup,Access) as follows.

• −→T ← Setup(DB, 1λ): Given database DB and security parameter λ as input, it outputs a

distributed data structure
−→
T .

• data′ ← Access(op, id, data): Given an operation type op ∈ {read, write}, an ID id of the block to

be accessed, a data data, it outputs a block content data′ to the client.

4.5.1.2 Security Model

The client is the only trusted party. The servers are untrusted and can behave maliciously, in

which they can tamper with the inputs and/or outputs of the ORAM protocol. Our security model

captures the privacy and verifiability of the honest client in the presence of a malicious adversary

corrupting a number of servers in the system. The privacy property ensures that the adversary
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cannot infer the client access pattern or database content. The verifiability ensures that the client

is assured to gain access to the trustworthy data from the server with integrity guarantee, and

they can detect and abort the protocol if one of the servers cheats. Following the simulation-based

security model in multi-party computation [32] and single-server ORAM [54], we define the security

of multi-server ORAM in the malicious setting by augmenting the S3ORAM security model [89] to

account for malicious adversaries as follows.

Definition 9 (Simulation-Based Multi-Server ORAM Security with Verifiability). We first define the

ideal and real worlds as follows.

Let Foram be an ideal functionality, which maintains the latest version of the database on

behalf of the client, and answers the client’s requests as follows.

• Setup: An environment Z provides a database DB to the client. The client sends DB to the ideal

functionality Foram. Foram notifies the simulator Soram the completion of the setup operation and

the DB size, but not the DB content. Soram returns ok or abort to Foram. Foram then returns ok

or ⊥ to the client accordingly.

• Access: For each access, the environment Z specifies an operation op ∈ {read(id,⊥),write(id, data)}

as the client’s input, where id is the ID of the block to be accessed and data is the block data to

be updated. The client sends op to Foram. Foram notifies the simulator Soram (without revealing

the operation op to Soram). If Soram returns ok to Foram, Foram sends data′ ← DB[id] to the client,

and updates DB[id] ← data accordingly if op = write. The client then returns the block data

data′ to the environment Z. If Soram returns abort to Foram, Foram returns ⊥ to the client.

In the real world, an environment Z gives the client a database DB. The client executes Setup

protocol with servers (S0, . . . , S`−1) on DB. For each access, Z specifies an input op ∈ {read(id,⊥
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),write(id, data)} to the client. The client executes Access protocol with servers (S0, . . . , S`−1). The

environment Z gets the view of the adversary A after every operation. The client outputs to the

environment Z the data of block with ID id being accessed or abort (indicating abort).

We say that a protocol ΠF securely realizes the ideal functionality Foram in the presence of a

malicious adversary corrupting t servers iff for any PPT real-world adversary that corrupts up to t

servers, there exists a simulator Soram, such that for all non-uniform, polynomial-time environment

Z, there exists a negligible function negl such that

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealForam,Soram,Z(λ) = 1]|≤ negl(λ).

4.5.2 The Proposed MACAO Framework

In this section, we describe our ORAM framework in detail. We first present how state-

of-the-art active ORAM schemes are vulnerable against the active adversary. We then develop

sub-protocols that are used to build our framework.

4.5.2.1 ORAM in the Malicious Setting

In passive ORAM schemes (e.g., [161, 169, 179]), the server only acts as a storage-only service,

which processes data sending and receiving requests by the client. Therefore, any malicious behavior

can be easily detected by creating a MAC for each ORAM block being requested [169]. Malicious

security is more difficult to achieve in the active ORAM setting, where the client delegates the

computation to the server for reduced bandwidth overhead. Next, we review the attack introduced in

[54] to illustrate the vulnerability of state-of-the-art active ORAM schemes in the malicious setting.
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Most efficient active ORAMs (e.g., [52, 89, 150]) follow the tree-ORAM paradigm and harness

PIR techniques to implement the retrieval phase efficiently. As outlined in §4.3.7, to privately retrieve

the block indexed i, the client creates a PIR query, which is a unit vector v where all elements are

set to zero, except the one at index i being set to 1. Such a query is either encrypted with HE or

secret-shared. According to the PIR, the server computes a homomorphic inner product between v

and the vector containing ORAM blocks on the retrieval path. So, if the adversary modifies ORAM

blocks that will be likely multiplied with the ciphertext/share of the zero components in the retrieval

vector, the final inner product will still be correct. In this case, the client is unable to tell whether

the adversary has modified the ORAM structure, but the malicious server has learned if the vector

component was zero or not, thus violating the privacy of the query. In the tree paradigm, the upper

levels of the tree will likely contain blocks that have been recently accessed. By modifying data

blocks in upper levels, the malicious server can learn whether the same blocks have been accessed

again with high probability. To prevent this, Devadas et al. [54] suggested the client to download a

large portion of data blocks, and apply the same homomorphic computation (like what server did)

on them (as what should be done at the server), to verify if computation at the server is consistent

with the one computed locally. This technique, however, incurs high bandwidth and computation

overhead at the client.

4.5.2.2 Our Sub-Protocols

In this section, we design some sub-protocols for our MACAO framework. These sub-protocols

offer security against the attacks targeting the inner product between the client queries and the

ORAM data as presented above. We present the security proof of sub-protocols in the Appendix.
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Inputs: Client has input α and Si has inputs (〈U〉i, 〈V〉i, 〈U〉i+1, 〈V〉i+1), where 〈U〉i = (JUKi, JαUKi) and so
forth. Each Si has JrKi, Jr̂Ki as the shares of two random values r, r̂ ∈ Fp.

1. Every Si locally computes Xi ← JUKi × JVKi + JUKi × JVKi+1 + JUKi+1 × JVKi and Yi ← JUKi × JαVKi +
JUKi × JαVKi+1 + JUKi+1 × JαVKi.

2. Every Si represents Xi and Yi as the sum of random matrices as Xi = R
(i)
0 + R

(i)
1 + R

(i)
2 , where R

(i)
j

$←
Fm×kp and Yi = T

(i)
0 + T

(i)
1 + T

(i)
2 , where T

(i)
j

$← Fm×kp . Si retains (R
(i)
i ,R

(i)
i+1,T

(i)
i ,T

(i)
i+1) and sends

(R
(i)
i−1,R

(i)
i ,T

(i)
i−1,T

(i)
i ) to Si−1, (R

(i)
i ,R

(i)
i+1,T

(i)
i ,T

(i)
i+1) to Si+1.

3. Every Si computes 〈Q〉i = (JQKi, JαQKi) and 〈Q〉i+1 = (JQKi+1, JαQKi+1), where JQKi ← R
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Output: Each Si sends JrKi, Jr̂Ki to all other servers to compute r, r̂ as r ←
∑
iJrKi, r̂ ←

∑
iJr̂Ki. All servers set

rt ← rt and r̂t ← r̂t for t = 1, . . . ,mp. Every Si computes and sends to the client JxKi ←
∑
j

∑
k rtJQ[j, k]Ki,

JxKi+1 ←
∑
j

∑
k r̂tJQ[j, k]Ki+1, JyKi ←

∑
j

∑
k rtJαQ[j, k]Ki, JyKi+1 ←

∑
j

∑
k r̂tJαQ[j, k]Ki+1, where t =

jp + k . If (JxKi, JyKi) received from Si and Si−1 are inconsistent or αx 6= y, where x ←
∑
iJxKi and

y ←
∑
iJyKi, the client sends ⊥ to all servers and aborts. Otherwise, the client sends ok and every Si accepts

〈Q〉i, 〈Q〉i+1 as its correct authenticated shares of U×V.

Figure 4.25: Authenticated matrix multiplication with RSS.

We construct matrix multiplication protocols using RSS and SPDZ schemes described in

§4.3.6.2.

We first extend RSS to be secure against a malicious adversary in the three-server setting.

The key idea is to create an information-theoretic MAC for each secret as proposed in [51]. Let u, v

be two secrets to be multiplied. The dealer (i.e., the client in our model) creates the authenticated

shares of u and v, i.e., 〈u〉 = (JuK, JαK) and 〈v〉 = (JvK, JαvK), and distributes them appropriately to

servers accordingly. More specifically, every Si receives (〈u〉i, 〈u〉i+1, 〈v〉i, 〈v〉i+1). All servers jointly

execute the RSS multiplication protocol to compute JuvK over JuK, JvK, and JαuvK over JαuK, JvK (or

JαvK, JuK), resulting in 〈uv〉 = (JuvK, JαuvK). To this end, every Si sends 〈uv〉i, 〈uv〉i+1 to the client.

The client executes x← AuthRecover(α, (〈uv〉0, . . . , 〈uv〉`−1)) and aborts if x =⊥.

We now develop an authenticated matrix multiplication protocol based on the extended

RSS. Given two matrices U ∈ Fm×np and V ∈ Fn×pp , U ×V incurs O(mnp) number of pair-wise

multiplications. Simply using RSS for each multiplication requires O(mnp) shares being sent from one
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Initialize: The servers invoke the pre-computation to generate sufficient number of authenticated shares of matrix
multiplication triples (〈A〉, 〈B〉, 〈C〉).

Inputs: The client has input α and every Si has inputs (JαKi, 〈U〉i, 〈V〉i). Each Si has JrKi, Jr̂Ki as the shares of
random values r, r̂ ∈ Fp.

1. Every Si locally computes JEKi ← JUKi − JAKi, and JPKi ← JVKi − JBKi and broadcast JEKi, JPKi.
2. All servers open E and P by every server locally computing E←

∑
iJEKi, P←

∑
iJPKi .

3. Every Si locally computes 〈Q〉i = (JQKi, JαQKi), where JQKi ← JCKi + E × JBKi + JAKi × P + E × P and
JαQKi ← JαCKi + E× JσBKi + JσAKi ×P + JαKiE×P, P = U×V.

Output: Each Si sends JrKi, Jr̂Ki to all other servers to compute r, r̂ as r ←
∑
iJrKi, r̂ ←

∑
iJr̂Ki. All servers

set rt ← rt and r̂t ← r̂t for t = 1, . . . ,mp. Every Si locally computes and sends to the client JxKi ←∑
j

∑
k (rtE[j, k] + r̂tP[j, k]) and JyKi ←

∑
j

∑
k (rtJαE[j, k]Ki+ r̂tJαP[j, k]Ki), where JαEKi = JαUKi− JαAKi,

JαPKi = JαVKi − JαBKi and t = jp+ k. The client computes x←
∑
iJxKi, y ←

∑
iJyKi. If αx 6= y, the client

sends ⊥ to all servers and aborts. Otherwise, the client sends ok and every Si accepts 〈Q〉i as its correct
authenticated share of U×V.

Figure 4.26: Authenticated matrix multiplication with SPDZ.

server to the other servers. Instead of doing so, we can perform the local matrix multiplication over

the shares and then only re-share the computation result. This strategy saves a factor of n number

of shares to be transferred among three servers. Let 〈U〉 = (JUK, JαUK) and 〈V〉 = (JVK, JαVK) be

the authenticated share of U and V, respectively. Figure 4.25 presents our matrix multiplication

protocol with RSS scheme in the three-server setting with malicious security.

In our framework, we only employ RSS for the specific three-server setting, where no server

can collude with each other (level 1 of privacy). Although a higher privacy level can be achieved

with the general (`− t)-threshold RSS, where ` = 2t+ 1 is the number of servers and t is the privacy

level, it requires
(
`
t

)
shares for each secret,

(
`−1
t

)
of which are stored in each server. This significantly

increases the server storage, I/O access, communication and computation overhead, and therefore

it is not desirable. In the following, we construct another matrix multiplication protocol, which is

more suitable for applications that need a high privacy level.

Inspired by [133], we develop an efficient authenticated matrix multiplication protocol with

SPDZ sharing. As discussed previously, the computation of U ×V, where U ∈ Fm×np ,V ∈ Fn×pp
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incurs O(mnp) numbers of multiplication. Simply using the original SPDZ multiplication protocol

[51] for the matrix multiplication will increase the communication overhead among the servers

significantly10. To save a factor of n the bandwidth overhead, instead of using the standard Beaver

triples of the form (a, b, ab), we generate matrix multiplication triples (A,B,C), where C = A×B.

Now we assume that each server Si stores an authenticated share of the triple as (〈A〉i, 〈B〉i, 〈C〉i).

Figure 4.26 describes the matrix multiplication protocol by SPDZ. Note that in our setting, the

client owns the global MAC key α so they they can check the integrity of computation at the end of

the protocol. In other words, servers do not need to multiply their share of the MAC key with the

random linear combination of opened values.

We construct several PIR protocols in the shared setting with malicious security that will be

used in our ORAM framework. In contrast to standard the PIR, where the database is public, the

database in our setting is shared with authenticated secret sharing in Figure 4.5 and each server

in the system stores one or multiple shares of the database. In this setting, each database item

is split into m chunks as bi = (bi,1, . . . , bi,m), where bij ∈ Fp. So a database with N items can be

interpreted as a m ×N matrix B = (bi) ∈ Fm×Np . Let 〈B〉 = (JBK, JαBK) =
(

(JbiK), (JαbiK)
)
be

the authenticated share of B. Our PIR protocols are as follows.

We extend the original XOR-PIR protocol [45] to privately retrieve a block in the shared

setting with malicious security. We consider the three-server case; however it can be extended

to the general `-server setting. In this setting, the client creates three authenticated shares for

database B as (〈B〉0, . . . , 〈B〉2)← AuthCreate(α,B, 3). Each Si stores two out of three authenticated

shares as (〈B〉i, 〈B〉i+1). Our main idea is to harness the XOR-PIR protocol in [45] to retrieve each
10The authors in [18] observed that the offline phase can be optimized for functions. The approach is however, different.
We are not aware of other published results that optimized the offline phase for matrix multiplication.
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Parameters: N denotes the number of shared items in the shared database.

Inputs: The client has inputs (idx, α) and each server Si has inputs (〈B〉i, 〈B〉i+1).

1. Let (q0, . . . , qN−1) be the indicator for the retrieved block, i.e., qidx = 1 and qi = 0 for 0 ≤ i 6= idx < N . For
each authenticated shared database 〈B〉i, stored on Si and Si−1:

(a) The client generates a random binary string of length N, R(i) = (r
(1)
0 , . . . , r

(1)
N−1). The client generates

R(i+1) = (r
(2)
0 , . . . , r

(i+1)
N−1 ) by flipping the idx-th bit of R(i), i.e., r(i+1)

idx = r̄
(i)
idx and r(i+1)

j = r
(i)
j for all j 6= idx.

The client sends R(i) to Si and R(i+1) to Si+1.
(b) Si computes and responds with xi =

∑
j (JbjKi · r(i)

j ) and yi =
∑
jJαbjKi · r

(i)
j , where

∑
represents the

bit-wise XOR and · represents the bit-wise AND. Similarly, Si+1 computes and responds with xi+1 =∑
j (JbjKi · r(i+1)

j ) and yi =
∑
jJαbjKi · r

(i+1)
j .

(c) The client computes x′i = xi ⊕ xi+1 and y′i = yi ⊕ yi+1.

2. The client interprets x′i and y′i as the i-th authenticated share of the retrieved block b, i.e., 〈b〉i = (JbKi, JαbKi) =
(x′i,y

′
i). The client executes b← AuthRecover(α, (〈b〉0, . . . , 〈b〉2)).

Output: The client outputs b.

Figure 4.27: Authenticated XOR-PIR on additively shared database.

Parameters: N denotes the number of shared items in the shared database.

Inputs: The client has inputs (idx, α) and each server Si has inputs (〈B〉i, 〈B〉i+1, ).

1. The client creates an indicator Q = (q0, . . . , qN−1) for the block to be retrieved, i.e., qidx = 1 and qj = 0
for 0 ≤ j 6= idx < N . The client creates shares of Q by executing Create algorithm on each qi, resulting in
JQK0, . . . , JQK`−1. The client sends JQKi to Si for 0 ≤ i ≤ 2.

2. Every Si executes step 1 of the matrix multiplication protocol based on RSS scheme in Figure 4.25. Specifically,
every Si locally computes and responds with xi = JQKi × JBKi + JQKi × JBKi+1 + JQKi+1 × JBKi and yi =
JQKi × JαBKi + JQKi × JαBKi+1 + JQKi+1 × JαBKi.

3. The client computes b←
∑
i xi and t←

∑
yi.

Output: If αb = t, the client outputs b as the correct block. Otherwise, the client outputs ⊥.

Figure 4.28: Authenticated RSS-PIR on additively shared database.

authenticated share of the database block, and then verify the integrity of the block from the shares.

Figure 4.27 presents our protocol in details.

We construct a PIR protocol with malicious security based on the RSS matrix multiplication

protocol presented in §4.3.6.2. Similar to XOR-PIR, we consider the 3-server setting, where each

server Si stores two authenticated shares (〈B〉i, 〈B〉i+1) of database B. Figure 4.28 presents the

protocol in detail.
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Parameters: N denotes the number of shared items in the shared database.

Inputs: The client has inputs (idx, α) and each server Si has input 〈B〉i.

1. The client creates an indicator Q = (q0, . . . , qN−1) for the block to be retrieved, i.e., qidx = 1 and qj = 0 for
0 ≤ j 6= idx < N . The client creates the authenticated shares of Q by executing AuthCreate algorithm on each
qi, resulting in 〈Q〉0, . . . , 〈Q〉`−1. The client sends 〈Q〉i to Si

2. The client and all servers jointly execute the SPDZ-based matrix multiplication protocol in Figure 4.26 to
compute 〈Q×B〉. If the client does not abort, every Si sends the output 〈Q×B〉i to the client.

3. The client executes b← AuthRecover(α, 〈Q×B〉0, . . . , 〈Q×B〉`−1).

Output: The client outputs b as the retrieved block.

Figure 4.29: Authenticated SPDZ-PIR on additively shared database.

We construct a maliciously-secure PIR protocol based on the SPDZ matrix multiplication

(Figure 4.29). This protocol works in the general `-server setting, in which every Si stores a single

authenticated share of the database as 〈B〉i.

As outlined in §4.3.3, the core idea of the eviction in [179] is to maximize the number of data

blocks that can be pushed down in a single block scan on the eviction path via strategic pick and

drop operations. To make these operations oblivious, the client needs to download and upload the

entire bucket for each level scan, thereby suffering from the logarithmic communication overhead.

Similar to S3ORAM, MACAO framework harnesses the permutation matrix concept to implement

the Circuit-ORAM eviction strategy in a more communication-efficient manner. Figure 4.30 presents

our algorithm with the highlights as follows. For each level h on the eviction path v, we create a

(Z + 1)× (Z + 1) matrix Ih initialized with zeros. We consider the data to be computed with Ih as

a matrix Uh ∈ F(Z+1)×m
p containing Z blocks from the bucket at level h and the block supposed to

be held by the client11. The main objective is to perform V>h = U>h × Ih, where Vh ∈ F(Z+1)×m
p

contains the new data for the bucket at level h and the new block to be picked for deeper levels.

Therefore, to drop the holding block to an empty slot indexed x in the bucket at level h, the client

sets Ih[Z, x]← 1 (line 12). To pick a block at slot x′, the client sets Ih[x′, Z]← 1 (line 17). To skip
11Remark that each database block is split into m chunks ci ∈ Fp.
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(b, (I0, . . . , IH))← CreatePermMat(v):
1: hold← ⊥, dest← ⊥, b← {0}|b|
2: (deepest, deepestIdx)← PrepareDeepest(v)
3: target← PrepareTarget(v)
4: if target[0] 6= ⊥ then
5: hold← deepestIdx[0]; dest← target[0]
6: b← S[hold], S[hold]← {}
7: for h = 0 to H do
8: Ih[i, j]← 0 for 0 ≤ i ≤ Z, 0 ≤ j ≤ Z
9: if hold 6= ⊥ then
10: if h = dest then # Drop the on-hold block to this level
11: hold← ⊥, dest← ⊥,
12: Ih[Z][x]← 1 where xh is an empty slot index at level h
13: else# Move the on-hold block to the next level
14: Ih[Z][Z]← 1

15: if target[h] 6= ⊥ then # Pick a block at this level
16: Ih[x′][Z]← 1 where x′ ← deepestIdx[h]
17: hold← x′, dest← target[h]

18: for each real block id at level h do # Preserve existing blocks
19: if pm[id].pIdx mod Z 6= deepestIdx[h] then
20: Ih[x̂][x̂]← 1 where x̂← pm[id].pIdx mod Z

21: return (b, (I0, . . . , IH))

Figure 4.30: Permutation matrix for Circuit-ORAM eviction.

this level (no drop or pick), the client sets Ih[Z,Z]← 1, which moves the holding block to the next

level (line 14). To preserve an existing block at this level, the client sets Ih[x̂, x̂]← 1 where x̂ is the

slot index of the block in the bucket (lines 18-20).

4.5.2.3 MACAO Schemes

In this section, we construct two ORAM schemes in our framework called MACAOrss and

MACAOspdz by putting sub-protocols in the previous section altogether. Our constructions follow the

general tree-ORAM access structure [161] outlined in §4.3.1, which contains two main subroutines

including retrieval and eviction. At the high level idea, our ORAM schemes use multi-server

authenticated PIR protocols to implement the retrieval. For the eviction, our ORAM schemes

harness the concept of permutation matrix and the homomorphic matrix multiplication protocols.
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data′ ← Access(op, id, data):
1: (pid, pIdx)← pm[id]
2: data′ ← Retrieve(pid, pIdx)
3: if data′ =⊥ then
4: return abort
5: if op = write then
6: b← data
7: pm[id].pid

$← {0, . . . , 2H − 1}
8: Evict()
9: return data′

Figure 4.31: MACAO access structure.

We first give the storage layout at the client- and server-side, and then present our ORAM schemes

in detail.

Our constructions follow the tree-ORAM paradigm outlined in §4.3.1. In MACAOrss scheme,

there are three servers and each server Si ∈ {S0, S1, S2} stores two authenticated shares of the tree

as (〈T〉i, 〈T〉i+1). In MACAOspdz scheme, there are ` ≥ 2 servers, where each Si ∈ {S0, . . . , S`−1}

stores an authenticated share 〈T〉i and an additive share of the global MAC key, JαKi.

The client maintains the position map of the form pm := (id; pid, pIdx), where id is the block

ID, 0 ≤ pid < 2H is the path ID and 0 ≤ pIdx < ZH is the index of the block in its assigned path.

Notice that pm can be stored remotely at the servers by recursive ORAM [169] and meta-data

construction as discussed in S3ORAM in §4.4 (see §4.5.2.6). For ease of presentation, we assume that

pm is locally stored. Since we follow Circuit-ORAM eviction, the client needs to maintain the stash

component (S) to temporarily store blocks that cannot be evicted back to the tree. This stash can

also be stored at the server-side for reduced storage overhead as will be discussed in the next section.

Finally, the client stores the global MAC key α.

Figure 4.31 presents the general access structure of MACAO schemes. In the following, we

present in detail the retrieval and eviction phases of each scheme.
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b← MACAOrss.Retrieve(pid, pIdx):
1. return b, where b← The client executes either XOR-PIR protocol in Figure 4.27 or RSSS-PIR protocol in

Figure 4.28 with 3 servers, in which the client has input (pIdx, α) and each Si has inputs as the path pid of
〈T〉i, 〈T〉i+1.

Figure 4.32: MACAOrss retrieval.

MACAOrss.Evict():

Parameters: EvictCtr denotes the number of eviction operations initialized at 0, H denotes the height of ORAM
tree, ` = 3 denotes the number of servers in the system.

Inputs: The client has input α and every Si has inputs (〈T〉i, 〈T〉i+1).

Client:

1. v ← DigitReverse2(EvictCtr mod 2H), EvictCtr← EvictCtr + 1

2. (b, (I0, . . . , IH))← CreatePermMat(v)

3. (〈b〉0, . . . , 〈b〉`−1)← AuthCreate(α,b, `)

4. (JIhK0, . . . , JIhK`−1)← Create(Ih, `) for 0 ≤ h ≤ H
5. Send (〈b〉i, (JI0Ki, . . . , JIHKi)) to Si and Si−1 for 0 ≤ i < `

Server: For each level h of the eviction path v starting from the root:

6. Every Si forms authenticated shared matrices 〈Bh〉i, 〈Bh〉i+1 by concatenating the bucket P(v, h) of 〈T〉i, 〈T〉i+1

with 〈b〉i, 〈b〉i+1, respectively.
7. All parties execute RSS-based matrix multiplication protocol in Figure 4.25, where the client inputs α and

every Si inputs (JIhKi, 〈Bh〉i, JIhKi+1, 〈Bh〉i+1). Let 〈Bh × Ih〉i, 〈Bh × Ih〉i+1 be the output of Si.
8. Every Si interprets the last row of 〈Bh × Ih〉i, 〈Bh × Ih〉i+1 as the on-hold blocks 〈b〉i, 〈b〉i+1 respectively, for

the next level h+ 1, and updates the bucket P(v, h) of 〈T〉i, 〈T〉i+1 with the other rows.

Figure 4.33: MACAOrss eviction.

Our MACAOrss scheme operates on the specific three-server setting. MACAOrss employs

either XOR-PIR or RSS-PIR protocol for oblivious retrieval, and RSS matrix multiplication for

eviction as follows.

Figure 4.32 presents the retrieval phase of MACAOrss scheme. Since we perform the PIR

on the retrieval path, all the buckets on the path are interpreted as the database input of the

PIR protocols. As a result, the length of the PIR query is Z(H + 1) and the database input is

interpreted as a matrix of size Z(H + 1) ×m. Notice that we can use XOR-PIR and RSS-PIR

protocols interchangeably in this phase. The difference is that XOR-PIR incurs less computation

than RSS-PIR (XOR vs. arithmetic operations) with the smaller size of the client queries (binary
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string vs. finite field vector). As a trade-off, it doubles the number of data to be downloaded, and

the computed blocks on the servers are in the form of XOR shares. This XOR-share format does not

allow for further (homomorphic) arithmetic computations after being accessed once.

Figure 4.33 presents the eviction protocol of MACAOrss scheme in detail. We follow the

deterministic eviction strategy proposed in [71], where the eviction path is selected according to the

reverse-lexicographical order of the number of evictions being performed so far (line 1). Intuitively,

the client creates the permutation matrices for Circuit-ORAM eviction plans (line 2). The client

creates authenticated shares for the block fetched from the stash and the permutation matrices (lines

3, 4), and then distributes the shares to corresponding servers. Notice that it is not necessary to create

authenticated shares of permutation matrices because RSS scheme only needs one authenticated

share to do the authenticated homomorphic multiplication. Once receiving all shares from the client,

all servers execute the RSS-based authenticated matrix multiplication protocol in Figure 4.25 for

each level h of the eviction path. The servers form the authenticated shared matrices to be multiplied

with the shared permutation matrices by concatenating the buckets at level h of the authenticated

shared ORAM trees with the authenticated shared blocks sent by the client. The servers interpret

the last row of the resulting matrices as the authenticated shared blocks holding by the client for

the next level (h+ 1), and update the h-leveled buckets of the shared ORAM tree with the other

rows of the resulting matrices.

Our MACAOspdz scheme operates on the general `-server setting with the pre-computation

model.

As presented in Figure 4.34, MACAOspdz employs the SPDZ-PIR protocol, instead of RSS-PIR

or XOR-PIR in MACAOrss, to implement the private retrieval phase.
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b← MACAOrss.Retrieve(pid, pIdx):
1. return b, where b← The client executes SPDZ-PIR in Figure 4.29 with ` servers, in which the client has

input (pIdx, α) and each Si has inputs as the path pid of 〈T〉i.

Figure 4.34: MACAOspdz retrieval.

MACAOspdz.Evict():

Parameters: Same as Figure 4.33, except ` ≥ 2.

Inputs: The client has input α and every Si has inputs (JαKi, 〈T〉i).
Client: (b, (I0, . . . , IH))← Execute lines 1–3 in Figure 4.33.

1. (〈Ih〉0, . . . , 〈Ih〉`−1)← AuthCreate(Ih, `) for 0 ≤ h ≤ H
2. Send (〈b〉i, (〈I0〉i, . . . , 〈IH〉i)) to Si for 0 ≤ i < `

Server: For each level h of the eviction path v starting from the root:

3. Every Si forms authenticated shared matrices 〈Bh〉i by concatenating the bucket P(v, h) of 〈T〉i with 〈b〉i,
respectively.

4. All parties execute the SPDZ-based matrix multiplication protocol in Figure 4.26, where the client inputs α
and every Si has inputs (JαKi, 〈Ih〉i, 〈Bh〉i). Let 〈Bh × Ih〉i be the output of Si.

5. Every S interprets the last row of 〈Bh × Ih〉i as the on-hold block (〈b〉i for the next level h+ 1, and updates
the buckets P(v, h) of 〈T〉i with the other rows.

Figure 4.35: MACAOspdz eviction.

Figure 4.35 depicts the eviction phase of MACAOspdz, which is similar to that of MACAOrss,

except that it employs matrix multiplication protocol by SPDZ to implement the oblivious pick and

drop operations. In this case, the client creates and sends to the servers the authenticated shares of

the permutation matrices, instead of only the additive shares as in MACAOrss.

4.5.2.4 Security Analysis

We now present the security of MACAO schemes. The MACAO eviction follows the push-down

principle proposed in Circuit-ORAM [179] so that it has the same overflow probability as follows.

Lemma 6 (Stash Overflow Probability). Let the bucket size Z ≥ 2. Let st(MACAO[s]) be a random

variable denoting the stash size of a MACAO scheme after an access sequence s. Then, for any access

sequence s, Pr[st(MACAO[s]) ≥ R] ≤ 14 · e−R.
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Proof. (see [179])

We define the security model for the matrix multiplication with verifiability as follows.

Definition 10 (Matrix Multiplication with Verifiability). We first define the ideal world and real world

as follows.

Let Fmult be an ideal functionality, which performs the matrix multiplication for each client

request as follows. In each time step, the environment Z specifies two matrices X and Y as the

client’s input. The client sends X and Y to Fmult. Fmult notifies the simulator Smult (without

revealing X and Y to Smult). If Smult returns ok to Fmult, Fmult computes and sends Z = X×Y to

the client. The client then returns Z to the environment Z. If Smult returns abort to Fmult, Fmult

returns ⊥ to the client.

In the real world, Z specifies an input (X,Y) to the client. The client executes the matrix

multiplication protocol Π with servers (S0, . . . , S`−1). The environment Z gets the view of the

adversary A after every operation. The client outputs to the environment Z the output of the

protocol Π or abort.

We say that a protocol ΠF securely realizes the ideal functionality Fmult in the presence of a

malicious adversary corrupting t servers iff for any PPT real-world adversary that corrupts up to t

servers, there exists a simulator Smult, such that for all non-uniform, polynomial-time environment

Z, there exists a negligible function negl such that

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealFmult,Smult,Z(λ) = 1]|≤ negl(λ).
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Lemma 7. In the 3-server setting, the matrix multiplication protocol via RSS in Figure 4.25 is secure

against a malicious adversary corrupting an arbitrary server.

Proof. We prove by constructing a simulator such that the environment Z cannot distinguish between

the real protocol and the ideal functionality. We define the simulator Smult in the ideal world and a

sequence of hybrid games as follows.

The simulator follows the honest procedure on behalf of the client to multiply two dummy

matrices X ∈ Fn×mp and Y ∈ Fm×pp . During the multiplication, if the client (executed by the

simulator) aborts then the simulator sends abort to Fmult and stops. Otherwise, the simulator returns

ok to Fmult (causing it to output the result to the client).

We define a sequence of hybrid games to show that the following real world and the simulation

in the ideal world are statistically indistinguishable:

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealFmult,Smult,Z(λ) = 1]|≤ negl(λ).

We define Game 0 as the real game RealΠF ,A,Z(λ) with an environment Z and three

servers in the presence of an adversary A presented in Definition 10. In this case, the real matrix

multiplication protocol ΠF is the one presented in Figure 4.25. Without loss of generality, we assume

server S0 is corrupted.

We define Game 1 as follows. In this game, the client locally computes Z = X×Y. Whenever

the client executes the protocol ΠF with three servers, if abort does not occur, the client uses their

locally computed Z for further processing. The difference between Game 0 and Game 1 happens if at

some point, where the client obtains an incorrect computation from the servers, but unable to detect
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because the adversary generates a valid MAC of the computation (thus the abort does not occur).

We claim that Game 0 and Game 1 are statistically indistinguishable. The intuition is to show that

if the adversarial server ever cheats by modifying the protocol input during the computation, it will

be caught with high probability (thereby forcing the adversary to follow the protocol faithfully).

Let 〈X〉i = (JXKi, JαXKi) and 〈X〉i = (JYKi, JαYKi) be the authenticated shares of X and

Y for every server Si, 0 ≤ i ≤ 2. Due to additive secret sharing, we have that X =
∑

i JXKi,

Y =
∑

i JYKi, αX =
∑

i JαXKi and αY =
∑

i JαYKi. By replicated secret sharing, Z = X×Y can

be expressed as

Z =(JXK0 + JXK1 + JXK2)× (JYK0 + JYK1 + JYK2)

=(JXK0 × JYK0 + JXK0 × JYK1 + JXK1 × JYK0)S0
+

(JXK1 × JYK1 + JXK1 × JYK2 + JXK2 × JYK1)S1
+ (4.9)

(JXK2 × JYK2 + JXK0 × JYK2 + JXK2 × JYK0)S2
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S0 can cheat at three stages: (i) before the re-sharing phase where S0 modifies their own shares

(JXK0, JYK0, JXK1, JYK1) (Equation 4.9); (ii) during the re-sharing phase where S0 sends inconsistent

shares to other servers (Equation 4.10); (iii) after the re-sharing phase where S0 deviates the linear

combination (Equation 4.11). It can be seen that (ii) and (iii) may result in the servers storing

inconsistent copies with each other, which can be detected at the output phase of the protocol.

Specifically, every server Si performs the random linear combination of all components JzjKi in the
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resulting matrix JZKi as JxKi ←
∑

j rjJzjKi. Due to RSS, JxKi will be computed by two servers on

their own shares. This means if JZKi is inconsistent from two servers, the client will receive two

different xi and, therefore, can tell whether one of the servers has cheated.

Finally, we show that if the adversary adds any error to his local computation before the

re-sharing phase (i.e., stage (i)), they will also get caught. Let T be an error introduced by S0

during its local computation. By Equation 4.9, the computation will now become (X ×Y + T).

Hence, to make the client not abort, S0 should modify its shares of the MACs in such a way that all

servers will compute the valid share of the MAC of the form α(X×Y + T) at the end. Remark

that the MAC of the multiplication X×Y is α(X×Y), which can be computed by multiplying αX

with Y via replicated secret sharing as

αX×Y =(JαXK0 + JαXK1 + JαXK2)× (JYK0 + JYK1 + JYK2)

=(JαXK0 × JYK0 + JαXK0 × JYK1 + JαXK1 × JYK0)S0
+

(JαXK1 × JYK1 + JαXK1 × JYK2 + JαXK2 × JYK1)S1
+ (4.12)

(JαXK2 × JYK2 + JαXK2 × JYK0 + JαXK0 × JYK2)S2
.

Let T′ be an error introduced by S0 during the local computation in Equation 4.12. As

shown above, the resulting MAC computation will be of the form (αX×Y + T′). Thus,

α(X×Y) + T′ = α(X×Y + T) ⇐⇒ T′ = αT. (4.13)

Since α is the global MAC key known only be the client, the probability that S0 can generate a valid

(T,T′) pair is 1
|Fp| . That means the adversary cannot deviate from the protocol, otherwise, they will

cause the client to abort the protocol with high probability.
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We define Game 1’ as follows. In this game, the client executes ΠF with three servers

using dummy matrices, instead of the one chosen by the environment Z. We introduce the ideal

functionality Fmult, which the client queries to answer the environment requests. During executing

ΠF , if the client does not abort, the output of F is forwarded to Z. We claim that Game 1 and

Game 2 are statistically indistinguishable, in which the view of the adversary can be simulated

given the view of the honest servers. At the beginning of the ΠF protocol, the client distributes

the authenticated share of the multiplication matrices to each server. Due to the perfect secrecy of

additive secret sharing, all these shares are uniformly distributed. After the local computation, each

server re-shares the computed result with additive secret sharing and distributes the shares to other

servers (i.e., step 1 in Figure 4.25). Such shares are also uniformly distributed due to the security of

additive secret sharing. All these properties permit to simulate the view of the adversary given the

view of the honest servers.

We define Game 0’ similar to Game 0 except that the client uses dummy matrices to interact

with the servers, instead of the ones provided by the environment Z. The client queries the ideal

functionality Fpir on the actual input provided by Z and forwards the output to Z. We claim

that Game 1’ and Game 0’ are indistinguishable using the same argument as between Game 1 and

Game 0. We can see that Game 0’ is the ideal game IdealFmult,Smult,Z with simulator Smult and the

environment Z.

Putting all the games together, we have that Game 0 ≡ Game 1 ≡ Game 1’ = Game 0’ and

this completes the proof.

Corollary 4. In the `-server setting, the matrix multiplication protocol by SPDZ in Figure 4.26 is

secure against a malicious adversary corrupting (`-1) servers.
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Proof. This proof can be derived from the proof of Lemma 7 and the one in [51] so that we will not

present it in detail due to repetition. Intuitively, the proof works by defining the simulator and the

hybrid games similar to the ones in the proof of Lemma 7 with a slight tweak as follows. It was

proven in [51] that the probability that the adversary can cheat during the SPDZ multiplication over

two shared values is 1/|Fp|. Thus, we can follow the proof in [51] and present it for the vectorized

values (i.e., matrix) to construct Game 1. Similarly, it has been also proven in [51] that the view of

the ideal process and the real process is statistically indistinguishable by the SPDZ multiplication

over single values. We can follow [51] to construct Game 1’ for vectorized values.

Lemma 8. In the 3-server setting, the XOR-PIR protocol on an authenticated shared database in

Figure 4.27 is secure against a malicious adversary corrupting an arbitrary server.

Proof. We prove this by constructing a simulator such that the environment Z cannot distinguish

between the real protocol and the ideal functionality. We define the simulator Spir in the ideal world

and a sequence of hybrid games as follows.

To simulate the setup protocol, the simulator follows the honest setup procedure with a

dummy database B′ containing N dummy data items, on behalf of the client. For the retrieval

simulation, the simulator follows the honest retrieval procedure, on behalf of the client, to read a

block with dummy ID. During the access operation, if the client (executed by Spir) aborts then the

simulator sends abort to Fpir and stops. Otherwise, the simulator returns ok to Fpir.

We define a sequence of hybrid games to show that the following real world and the simulation

in the ideal world are statistically indistinguishable:

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealFpir,Spir,Z(λ) = 1]|≤ negl(λ).
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We define Game 0 as the real game RealΠF ,A,Z(λ) with an environment Z and three

servers in the presence of an adversary A. presented in Definition 10. In this case, the real PIR

protocol ΠF is the one presented in Figure 4.27. Without loss of generality, we assume server S0 is

corrupted.

We define Game 1 as follows. In this game, the client maintains a copy of the database

locally. Whenever the client privately retrieves a data item block from the servers, if abort does

not occur, the client uses its version stored locally for further processing. The difference between

Game 0 and Game 1 happens if at some point, the client retrieves an incorrect item from the servers,

but unable to detect since the adversarial server generates a valid MAC for it (thus the abort does

not occur). We claim that Game 0 and Game 1 are statistically indistinguishable. Similar to other

proofs, the intuition is to show that if the adversarial server ever cheats during the PIR computation,

it will be caught with high probability as follows.

Every server Si ∈ {S0, S1, S2} stores two authenticated shares of the database B as 〈B〉i =

(JBKi, JαBKi) = ((JbjKi), (JαbjKi)) and 〈B〉i+1 = (JBKi+1, JαBKi+1) = ((JbjKi+1), (JαbjKi+1)). Ac-

cording to the XOR-PIR protocol, every Si aggregates (i.e., XOR) all authenticated shares of the

blocks that correspond with the value ‘1’ in the client queries. Let e0 and e1 be the queries that the

client sends to S0, which are the binary strings of length `, where ` is the number of database blocks.

Let ê0 (resp. ê1) be the error introduced by S0 during the bitwise operations between JBK0 (resp.

JBK1) and e0 (resp. e1). So, the reply that the client obtains from S0 is of the form

JbK(0)
0 ⊕ e0 =

⊕

∀j : e0[j]=1

JbjK0

JbK(0)
1 ⊕ e1 =

⊕

∀j : e1[j]=1

JbjK1

(4.14)
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Since S1, S2 are honest, the client obtains honest answers JbK(1)
0 , JbK(1)

1 , JbK(0)
2 , JbK(1)

2 from

them. Due to XOR-PIR, the client reconstructs the following shares from the server:

JbK0 ⊕ e0 = JbK(0)
0 ⊕ JbK(1)

0 = JbK0 + t0

JbK1 ⊕ e1 = JbK(0)
1 ⊕ JbK(1)

1 = JbK1 + t1

JbK2 = JbK(0)
2 ⊕ JbK(1)

2 = JbK2

(4.15)

By additive secret sharing, the client recovers a block of the form b′ = JbK0 + JbK1 + JbK2 +

t0 + t1 = b+ t where t = t0 + t1 ∈ Fp. Equation 4.15 implies that if the adversary introduces any bit

of error during the XOR computation, the client will recover incorrect shares of the original block b

thereby, obtaining an arbitrary block b′ different from b. In order to make the client not abort, the

adversary must inject the errors during the bitwise computation between 〈αB〉0 with e0 and 〈αB〉1

with e1, in such a way that allows the client to reconstruct a valid MAC for b′, i.e., αb′ = αb+ αt.

Since α is unknown, the probability that the adversary can cheat to make the client reconstruct a

valid MAC for b′ is 1
|Fp| . That means the adversary must follow the protocol faithfully, otherwise

they will cause the client to abort with high probability.

We define Game 1’ as follows. The client executes the Setup with a dummy database B′ (as

similar to Spir) instead of the one provided by Z. For each request, the client executes a dummy

retrieval with three servers instead of the one chosen by Z. In this game, we use the ideal functionality

Fpir, which store the database provided by Z in the setup phase, to answer the environment requests.

For each retrieval, if the client does not abort, it forwards the output of Fpir to Z.

We say that Game 1 and Game 1’ are indistinguishable. Notice that if the client does not

abort in these games, then the data item is retrieved correctly and the corrupted server follows the
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protocol faithfully as the honest servers. In our PIR protocol, the database is stored in the form of

authenticated shares at the server, which are uniformly distributed due to the perfect privacy of

additive secret sharing. The PIR queries are shared by XOR secret sharing, which are also uniformly

distributed due to the perfect secrecy of XOR. Due to PIR, the computation is performed over the

entire database at each server. All these security properties indicate that the view of the adversary

can be simulated given the view of the honest servers that execute the XOR-PIR protocol with the

client.

We define Game 0’ similar to Game 0 except that the client uses a dummy database and a

dummy retrieval index to interact with the servers, instead of the ones provided by the environment

Z. The client queries the ideal functionality Fpir on the actual input provided by Z and forwards the

output to Z. We claim that Game 1’ and Game 0’ are indistinguishable using the same argument as

between Game 1 and Game 0. Game 0’ is the ideal game IdealFpir,Spir,Z with simulator Spir and

the environment Z. Putting all the games together, we have that Game 0 ≡ Game 1 ≡ Game 1’ ≡

Game 0’ and this completes the proof.

We now prove the security of multi-server PIR protocols. We first present the security model

of multi-server PIR based on simulation as follows.

Definition 11 (Multi-Server PIR with Verifiability). We first define the ideal world and real world as

follows. Let Fpir be an ideal functionality, which maintains a version of the database on behalf of

the client and answers the client’s requests as follows.

An environment Z provides a database B to the client. The client sends B to Fpir. Fpir

stores B and notifies the simulator Spir the completion of the setup, but not the content of B. The

simulator Spir returns ok or abort to Fpir. Fpir then returns ok or ⊥ to the client accordingly. In
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each retrieval step, the environment Z specifies an index idx as the client’s input. The client sends

idx to Fpir. Fpir notifies the simulator Spir (without revealing idx to Spir). If Spir returns ok to Fpir,

Fpir sends b← B[idx] to the client. The client then returns b to the environment Z. If Spir returns

abort to Fpir, Fpir returns ⊥ to the client.

In the real world, Z gives the client a database B. The client executes the Setup with `

servers (S0, . . . , S`−1). At each time step, Z specifies an input idx to the client. The client executes

the PIR protocol Π with (S0, . . . , S`−1). The environment Z gets the view of the adversary A after

every operation. The client outputs to the environment Z the output of Π or abort.

We say that a protocol ΠF securely realizes the ideal functionality Fpir in the presence of a

malicious adversary corrupting t servers iff for any PPT real-world adversary that corrupts up to t

servers, there exists a simulator Spir such that for all non-uniform, polynomial-time environment Z,

there exists a negligible function negl such that

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealFpir,Spir,Z(λ) = 1]|≤ negl(λ).

Corollary 5. In the 3-server setting, the RSS-PIR protocol on an authenticated shared database in

Figure 4.28 is secure against a malicious adversary corrupting an arbitrary server.

Proof. This can be derived from the proof of Lemma 8 so we will not repeat due to repetition.

Intuitively, we construct the Simulator Spir and the hybrid games similar to the ones in the proof of

Lemma 8, with a small change as follows. This protocol interprets the PIR database as a matrix to

execute the matrix multiplication protocol via replicated secret sharing. We have shown in the proof

of Lemma 7 that the probability that the adversary can inject a malicious input to the stage (i) of

the matrix multiplication without being caught is 1
|Fp| . We can use this argument to construct Game
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1. In Game 1’, we can argue that the view of the ideal process and the real process is statistically

indistinguishable because the retrieval queries in this PIR are in the form of additive secret sharing,

and therefore, are uniformly distributed.

Corollary 6. In the `-server setting, the SPDZ-PIR protocol on an authenticated shared database

setting in Figure 4.29 is secure against a malicious server corrupting up to (`− 1) servers.

Proof. Similar to the proof of Corollary 5, this proof can be derived from the proof of Lemma 8 by

replacing the XOR operations with the matrix multiplication protocol by SPDZ secret sharing.

Now we state the security of our MACAO schemes as follows.

Theorem 5 (MACAO Security). MACAO framework is statistically (information-theoretically) secure

by Definition 9.

Proof. We define a simulator in the ideal world and a sequence of hybrid games as follows.

To simulate the setup protocol, the simulator follows the honest setup procedure with a

database DB′ containing N blocks bi for each bi
$← {0, 1}|b|, on behalf of the client. For the access

simulation, the simulator follows the honest access protocol, on behalf of the client, to read a dummy

block with dummy ID. During the access operation, if the client protocol (executed by the simulator)

aborts then the simulator sends abort to Foram and stops. Otherwise, the simulator returns ok to

Foram.

We define a sequence of hybrid games to show that the following real world and the simulation

in the ideal world are statistically indistinguishable:

|Pr[RealΠF ,A,Z(λ) = 1]− Pr[IdealForam,Soram,Z(λ) = 1]|≤ negl(λ).
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We define Game 0 as the real game RealΠF ,A,Z(λ) with an environment Z and ` servers

in the presence of an adversary A as presented in Definition 8. In this game, the real ORAM access

protocol ΠF is the one presented in Figure 4.31, where the retrieval and evictions subroutines are

presented in Figure 4.32, Figure 4.33, Figure 4.34, Figure 4.35.

We define Game 1 as follows. In this game, the client maintains a copy of the data blocks bi

in plaintext locally. Whenever the client accesses a block bi from the servers, If abort does not occur,

the client uses its plaintext stored locally for further processing. The difference between Game 0 and

Game 1 happens if, at some point, the client retrieves a modified block from the servers, but unable

to detect since the adversarial server generates a valid MAC for it (thus the abort does not occur).

We claim that Game 0 and Game 1 are statistically indistinguishable as follows. First,

MACAO schemes harness multi-server PIR protocols based on XOR/RSS/SPDZ scheme to perform

the retrieval phase. We have shown that all these protocols are secure against the malicious adversary

by Lemma 8, Corollary 5 and Corollary 6, where the probability that the adversary can tamper with

the block and forge a valid MAC is 1
|Fp| . Second, MACAO schemes use the authenticated matrix

multiplication protocols by RSS or SPDZ to perform the eviction. By Lemma 7 and Corollary 4, all

these protocols are secure against the malicious adversary, where the probability that the adversary

can deviate from the protocol without being caught is 1
|Fp| .

We define Game 1’ as follows. In this game, the client executes the Setup with a dummy

database DB′ similar to the simulation, instead of the one provided by the environment Z. For each

access operation, the client executes a dummy access with ` servers instead of the one chosen by Z.

We also introduce the ideal functionality Foram storing the database provided by the environment Z

in the setup phase, which the client queries to answer the environment requests. At each time of

access, if the client does not abort, it forwards the output of Foram to Z.
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We claim that Game 1 and Game 1’ are statistically indistinguishable as follows. In both

games, if the client does not abort then the data block is retrieved correctly. That means the

corrupted server follows the protocol faithfully as the honest servers. We show that the view of

the adversary in these games can be simulated given the view of the honest servers that execute

Access protocol of MACAO with the client as follows. In MACAO, the client database is stored in the

ORAM tree at the server in the form of authenticated shares, which achieves a perfect security due

to the perfect privacy of additive secret sharing. MACAO schemes harness the tree-ORAM paradigm,

where the client privately assigns each block to a path selected uniformly at random. Once a block

is retrieved, the client locally assigns it to a new random path, and therefore, it is unknown to the

server. Thus, given any data request sequence, the server observes a sequence of random retrieval

paths. The eviction path in MACAO is deterministic following the reverse lexicographical order and

therefore, it is publicly known by anyone. MACAO schemes employ the push-down strategy in [179],

which achieves a negligible failure probability with fixed system parameters (e.g., bucket size, stash

size) by Lemma 6. Therefore, given any two data request sequences of the same length, the servers

observe two access patterns that are statistically indistinguishable from each other (the statistical

bit comes from the negligible failure probability of push-down strategy). Moreover, any computation

performed by the servers is secure due to the security multi-server PIR protocols by Corollary 5,

Lemma 8, Corollary 6 and multiplicative homomorphic properties of SPDZ and RSS schemes. These

security properties show that the view of the adversarial server can be simulated given the view of

the honest servers in MACAO.

We define Game 0’ similar to Game 0 except that the client uses a dummy database and

dummy access operations to interact with the servers, instead of the ones provided by the environment

Z. The client queries the ideal functionality F on the input of Z and forwards its output to the

144



www.manaraa.com

environment Z. We claim that Game 1’ and Game 0’ are indistinguishable using the same argument

as between Game 1 and Game 0. It is easy to see that Game 0’ is the ideal game IdealF ,S,Z with

simulator S and the environment Z.

Putting all the games together, we have that Game 0 ≡ Game 1 ≡ Game 1’ ≡ Game 0’ and

this completes the proof.

4.5.2.5 Cost Analysis

We analyze the asymptotic cost of our proposed MACAO schemes. We treat some parameters

as constant including the finite field (p), the bucket size Z and the number of servers ` (i.e., ` = 3 in

MACAOrss and ` ≥ 2 in MACAOspdz). Following the tree ORAM literature (e.g., [161, 169, 179]), we

consider the statistical security parameter as a function of database size, i.e., λ = O(logN). Let

L = Z(H + 1) = O(logN) be the length of the path in the MACAO structure, and C = |b|/|Fp| be

the number of chunks per data block.

In the MACAOrss retrieval, the client sends six L-bit binary strings and receives six 2|b|-bit

replies if using XOR-PIR. If using RSS-PIR, the client sends six (L|Fp|)-bit queries, and receives

three 2|b|-bit replies. In the MACAOrss eviction, the client sends to each server two authenticated

shares of a data block and (H+1) permutation matrices of size (Z+1)× (Z+1), where each element

is log2 p bits. Since L = O(logN) and p is fixed, the client communication cost per MACAOrss access

is O(|b|+ logN). MACAOspdz has a similar asymptotic bandwidth cost as MACAOrss because they

only differ in the fixed number of authenticated shares per server (2 vs. 1), and the number of servers

` (yet ` is fixed).

In MACAOrss, servers communicate with each other only in the eviction phase, where two

authenticated shares of the entire eviction path is transmitted from one server to the others.
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Hence, the server-server communication is 4L(`− 1)|b|= O(|b|logN). In MACAOspdz, servers need

to communicate with each other not only in the eviction but also in the retrieval phase. For

each retrieval/eviction operation, every server sends the authenticated shares of the entire path

and the client queries/matrices to all the others. Thus, its total server-server communication is

2L(|Fp|+|b|+(Z + 1)2 + |b|) = O(|b|logN).

In MACAOrss retrieval, the client generates 4L random bits and performs XOR on L-bit data

and |b|-bit data four times if using XOR-PIR. If using RSS-PIR, the client generates (`− 1)L|Fp|

random bits. In both cases, the client additionally performs 2C additions (for block and MAC

recovery) and C multiplications (for MAC comparison) over Fp field. For each MACAOrss eviction,

the client generates L(`− 1)(Z + 1)2 log2 p random bits, performs 2L(Z + 1)2(`− 1) additions and

L(Z + 1)2 multiplications over Fp. The cost of MACAOspdz is similar to that of MACAOrss using

RSS-PIR, but with ` ≥ 2.

In MACAOrss retrieval, each server performs XOR operations on 2|b|-bit strings approximately

L times if using XOR-PIR. If using RSS-PIR, each server performs 6LC modular multiplications,

4LC additions over Fp. Each MACAOrss eviction incurs 6LC multiplications and 16LC additions

over Fp with 4LC log2 p random bits being generated.

In both MACAOrss and MACAOspdz, the position map is of sizeN(log2N+log2 log2N). We fol-

low the eviction in [179], which requires the client to maintain a stash of size O(|b|λ) for negligible over-

flow probability. In total, the asymptotic client storage overhead isO(N(logN + log logN) + |b|logN).

An ORAM tree with N leaves can store 2N data blocks. Each node in the tree can store

Z blocks. In MACAOrss and MACAOspdz schemes, each server stores one and two authenticated
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shares of the ORAM tree, respectively. Therefore, the storage overhead per server in MACAOrss and

MACAOspdz is 4Z|b|N and 2Z|b|N bits = O(N), respectively.

4.5.2.6 Extensions

In this section, we describe some tricks that can be applied to our MACAO schemes.

We first propose a trick to reduce the bandwidth overhead as follows. Since our ORAM

framework relies on XOR secret sharing and additive secret sharing as the main building blocks, the

retrieval queries and eviction data can be created and distributed in a more communication-efficient

manner. The client can generate the authenticated shares of retrieval queries, data blocks and

permutation matrices using a Pseudo-Random Function (PRF) instead of a truly random function.

To reduce the communication overhead, the client can create random seeds for such pseudo-random

generator using a truly random function, and securely send the seeds to (` − 1) servers so that

they can generate their own shares themselves. Since the client only needs to send the shares to

one server, this strategy can significantly reduce the client bandwidth overhead. The price to pay

for this is the reduction of the security level from information-theoretic to computational due to

the pseudo-random generation function. In MACAOrss scheme, we can further apply this trick to

reduce the server-server communication overhead in the eviction phase. After performing the local

computation (e.g., line 1 in Figure 4.25), every server can generate and send the seeds to other

servers to let them calculate their re-shared values. In this case, every server only needs to send a

shared matrix (instead of four) to one other server.

We propose another trick to reduce the client storage overhead as follows. In our framework,

the client maintains two major components including a position map of size O(N(logN + log logN)

and a stash S of size O(|b|logN). While the position map can be stored remotely on the server-side

147



www.manaraa.com

using the recursion and meta-data techniques [54, 161], we present two solutions to remove S at

the client as follows. The first solution is to store S remotely at the server-side in the form of

authenticated shares (JSK, JαSK), and leverage homomorphic matrix multiplication protocols to

obliviously pick and drop the block from/into S. We treat S as an additional level of the ORAM

tree appended to the root as suggested in [179]. Thus, when executing the PIR protocol in the

retrieval phase, we need to include the stash level, and therefore, the retrieval query length (and the

number of data blocks in the path) will be (Z(H + 1) + λ) = O(logN). In the eviction phase, to

obliviously put a block b into S[x], the client creates a unit vector v = (v0, . . . , vλ−1) where vx = 1

and vy = 0 for all 0 ≤ y 6= x < λ. The client creates and sends authenticated shares 〈b〉 and 〈v〉,

and every server performs 〈S〉 ← 〈b〉 × 〈v〉> + 〈S〉. To obliviously pick a block at S[x′], the client

creates a unit vector v′ = (v0, . . . , vλ−1), where ex′ = 1 and ey = 0 for all 0 ≤ y 6= x < λ. The

client creates and sends authenticated shares of v′ and the servers perform 〈b〉 ← 〈v′〉 × 〈S〉> and

〈S〉 ← 〈S〉 − 〈v′〉 × 〈S〉>.

The other method is to implement the triplet eviction principle proposed in [54] using

homomorphic properties of additive shares as similar to [89]. Since this approach requires the

bucket size to be of size O(logN) for negligible overflow, the computation and communication in

the retrieval phase will be increased by a factor of O(logN).

4.5.3 Experimental Evaluation

4.5.3.1 Implementation

We fully implemented both MACAO schemes in §4.5.2.3 all the extensions in §4.5.2.6. In

MACAOspdz, we implemented only the online phase of the SPDZ-based matrix multiplication protocol

since we assume that authenticated shares of Beaver-like matrix triples were pre-computed sufficiently
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in the offline phase. The implementation was written in C++ consisting of more than 25K lines of

code for the MACAO controllers at the client- and server-side. We used three main external libraries:

(i) Shoup’s NTL library v9.10.0 [162] for the server computation; (ii) ZeroMQ library [99] for the

network communication; (iii) pthread for server computation parallelization. Our implementation

made use of SIMD instructions to optimize the performance of bit-wise operations and vectorized

computations on Intel x64 architecture. For the reduced bandwidth trick, we used tomcrypt library

[53] to implement seeded pseudo-random number generators using sober128 stream cipher. Each

server stored a 128-bit secret seed shared with the client. In MACAOrss scheme, each server stored

two extra 128-bit secret seeds shared with the other two servers, which are used to re-share the local

computation during the RSS-based matrix multiplication in the eviction phase.

Our implementation can be found at https://github.com/thanghoang/MACAO.

4.5.3.2 Configuration and Methodology

For the server-side, we employed three c5.4xlarge Amazon EC2 instances each equipped

with 3.00GHz 16-core Intel Xeon 8124M CPU, 16GB RAM and 8TB networked Elastic Block

Storage (EBS)-based SSD. For the client, we used a Macbook Pro with 2.6GHz 6-core Intel Core i7

8850H CPU and 32GB RAM.

We used a random database of size ranging from 1GB to 1TB. We selected two standard

data block sizes including 4KB and 256KB as these are commonly used in small-scale and large-scale

file systems, respectively.

We used a standard home Internet setting for client-server communication. Specifically, the

laptop client was connected to the Internet via WiFi with 54.5 Mbps download, 5.72 Mbps upload

throughput and 20ms round-trip latency to Amazon EC2 servers. The server instances were set up

149

https://github.com/thanghoang/MACAO


www.manaraa.com

20 22 24 26 28 210
0.2

0.4

0.6

0.8

1

1.2

1.4

DB Size (GB)

D
el
ay

(s
ec
)

MACAOrss MACAOprf
rss

MACAOspdz MACAOprf
spdz

Path-ORAM Ring-ORAM
Circuit-ORAM S3ORAM

(a) Block size |b|= 4KB

20 22 24 26 28 210
0

5

10

15

20

25

30

35

40

45

DB Size (GB)

D
el
ay

(s
ec
)

MACAOrss MACAOprf
rss

MACAOspdz MACAOprf
spdz

Path-ORAM Ring-ORAM
Circuit-ORAM S3ORAM

(b) Block size |b|= 256KB

Figure 4.36: End-to-end delay of MACAO schemes and their counterparts.

geographically close to each other, which resulted in the inter-server throughput of 1Gbps with 3ms

round-trip latency.

We selected S3ORAM and Path-ORAM as the main counterparts for MACAO since S3ORAM

is the most efficient multi-server ORAM scheme (but with no malicious security), while the others are

state-of-the-art single-server ORAM schemes. Although Onion-ORAM offers similar properties to

MACAO (e.g., constant bandwidth, malicious security), we did not explicitly compare our framework

with it because the delay of Onion-ORAM was shown significantly higher than S3ORAM and

Path-ORAM. The main performance evaluation metric is the end-to-end delay, which captures

the processing time at client- and server-side (e.g., I/O, computation) as well as the network

communication among parties. We configured the system parameters for all schemes as follows so

that they achieve the same failure probability of 2−80.

• MACAO: We selected the bucket size Z = 2, stash size |S|= 80 and performed two deterministic

evictions per access as suggested in [179]. We selected a 59-bit prime field for the computational

advantage of 64-bit architecture and the optimization of NTL library. In this experiment, we

150



www.manaraa.com

demonstrated the performance of MACAOrss with the RSS-PIR protocol only. It is because this

protocol allows to further enable secure computation on the accessed block, and its delay is higher

than XOR-PIR (so the comparison with counterparts will be more conservative).

• S3ORAM: We used the open-sourced implementation in [90]. We selected Z = 74 and eviction

frequency A = 37. Similar to MACAO, we selected a 59-bit prime field.

• Path-ORAM: We implemented a prototype of Path-ORAM. We selected Z = 4 and |S|= 80

[169]. We used Intel AES-NI library to accelerate cryptographic operations. We used AES with

counter mode (CTR) for encryption and decryption. We created the MAC tag for each node in

the Path-ORAM tree using AES-128 CMAC.

• Ring-ORAM: We selected standard parameters as suggested in [150] (i.e., Z = 16 and A = 20).

• Circuit-ORAM: We selected Z = 2, |S|= 80 and performed two evictions per access as in [179].

Similar to Path-ORAM, we used AES-128 CMAC for authentication and AES-CTR for encryption

with Intel AES-NI.

4.5.3.3 Setup Delay

We first discuss the time to set up necessary MACAO components (e.g., authenticated shares

of the ORAM trees, position maps) on the client machine. The delay grew linearly to the database

size. Specifically, it took around 370 s to 357,601 s to construct MACAOrss components for 1GB

to 1TB database with 4KB block size. For MACAOspdz components, it took 244 s to 241,553 s,

which was round 1.5 times faster than MACAOrss since MACAOspdz only needs 2 servers (vs. 3

in MACAOrss). With 255KB block size, the setup delay was 142 s to 135,927 s for MACAOspdz

components, and 209 s to 215,482 s for MACAOrss components. We note that we did not measure
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the preprocessing cost to generate multiplication triples for MACAOspdz scheme as it is out-of-scope

of this dissertation. We refer curious readers to [112] for its detailed benchmarks.

4.5.3.4 Overall Result

We present in Figure 4.36 the end-to-end delay of MACAO schemes compared with selected

counterparts with 4KB and 255KB block sizes and database sizes from 1GB to 1TB. In the

home network setting, all MACAO schemes outperformed Path-ORAM and Circuit-ORAM in all

testing cases, especially when the block size was large (i.e., 256KB). Specifically, Path-ORAM and

Circuit-ORAM took 369 ms to 650 ms and 625 ms to 1.2 s to access a 4KB block, respectively,

whereas MACAO schemes took 198 ms to 336 ms. All MACAO schemes (except MACAOrss) were

also faster than Ring-ORAM for 4KB block access. For 256KB block access, the performance gap

between MACAO and single-server ORAM schemes significantly increased since MACAO featured the

constant client-bandwidth blowup. In particular, Path-ORAM, Circuit-ORAM and Ring-ORAM

took 16 s to 32 s, 17 s to 34 s and 12 s to 24 s, respectively, for each 256KB-block access, whereas

MACAO schemes only took 3.3 s to 5.5 s. This resulted in MACAO being up to 7× faster than

single-server ORAM schemes.

On the other hand, the performance of MACAO schemes was comparable to S3ORAM, where

S3ORAM took 312 ms to 451 ms per 4KB-block access, and 1.78 s to 3.11 s per 256KB-block access,

respectively. MACAOspdz scheme was faster than S3ORAM for 4KB-block access since it operated on

two servers (vs. 3 in S3ORAM) with small amount of data, and the retrieval phase of MACAO incurred

less number of blocks to be computed than S3ORAM(O(logN) vs. O(log2N)). We notice that

MACAOspdz operates on the preprocessing model, where their online access operation performance

depends on the availability of authenticated matrix multiplication shares computed in the offline

152



www.manaraa.com

0 100 200 300 400 500

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

D
B

Si
ze

(G
B
)

Client comp. I/O access Server comp.

20

22

24

26

28

210

C-S comm. saved by reduced bandwidth trick

(a) |b|= 4KB

0 2,000 4,000 6,000 8,000

rss

rss

rss

rss

rss

rss

spdz

spdz

spdz

spdz

spdz

spdz

Delay (ms)

D
B

Si
ze

(G
B
)

C-S comm. S-S comm.

20

22

24

26

28

210

S-S comm. saved by reduced bandwidth trick

(b) |b|= 256KB

Figure 4.37: Cost breakdown of MACAO schemes.

phase. For 256KB-block access, S3ORAM was approximately 1.5 times faster than MACAO schemes.

This is mainly because MACAO schemes perform the computation on the information-theoretic MAC

components, whose size is equal to the block size. Notice that S3ORAM does not have the MAC and

it does not offer integrity and security against the malicious adversary.

One might also observe from Figure 4.36 that the bandwidth reduction trick significantly

lowered the end-to-end delays of MACAO schemes (denoted as MACAOprf
rss and MACAOprf

spdz schemes).

This trick allowed us to reduce the performance gap between the MACAO schemes using RSS and

SPDZ when the amount of data to be transmitted was large as in the 256KB-block access. The

price to pay for such efficiency is the reduction from information-theoretic to computational security.

To aid more understanding, we provide the detailed cost of MACAO schemes in the following section.

153



www.manaraa.com

1 2 3 4 5

0

2

4

6

8

10

12

14

Privacy level (t)

D
el
ay

(s
ec
)

MACAOspdz (4KB) MACAOprf
spdz (4KB)

MACAOspdz (256KB) MACAOprf
spdz (256KB)

Figure 4.38: End-to-end delay with varied privacy levels.

4.5.3.5 Cost Breakdown

We decomposed the delay of MACAO schemes to investigate cost factors that impact the

performance. As shown in Figure 4.37, there were four main sources of delay including client

processing, server processing, client-server communication and server-server communication.

MACAO schemes incurred very low computation at the client-side thereby, making them the

ideal choice for resource-limited clients such as mobile devices. The client main task was to generate

shares of the retrieval query and permutation matrices for eviction by invoking pseudo/true-random

number generator. The client recovered the accessed block and verified its integrity by performing

some modular additions and multiplications. All these operations are very lightweight, all of which

cost less than 4 ms and 40 ms for 4KB and 256KB block size on 1TB database, respectively.
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We disabled default caching mechanisms [146] to minimize the impact of random access

sequence on the I/O latency. The disk access contributed a small amount to the delay of MACAO

schemes due to the following reasons. The MACAO structure was stored on a network-based storage

unit called EBS with 2.1 Gbps throughput. Meanwhile, the amount of data to be loaded per retrieval

was small, which was only 4|b|(H + 1) KB, where |b|∈ {4, 256} and H ∈ {11, . . . , 27} for up to 1TB

of outsourced data. In MACAO schemes, the disk I/O access only impacted the retrieval, but not

eviction. This is because MACAO schemes follow the deterministic eviction, where the data along

the eviction path can be pre-loaded into the memory before the push-down operation. Hence, the

data can be read directly from the cache if needed, given that they were processed in the previous

operations but have not been written to the disk yet.

This contributed a large portion to the total delay, mostly due to the matrix multiplication

in the eviction phase. The server computation in MACAOrss was higher than in MACAOspdz since it

incurred more number of additions than MACAOspdz for each homomorphic multiplication.

MACAO schemes feature a constant client-bandwidth blowup similar to S3ORAM. Therefore,

only the query size and the eviction matrix size increased when the database size increased while

the number of data blocks to be transmitted remained the same. Therefore, although it was one

of the most significant factors contributing to the total delay, the client-server communication cost

of MACAO schemes was likely to remain the same when increasing the database size as shown in

Figure 4.37, where most of the time was spent to download/upload a constant number authenticated

shares of the data blocks. MACAOspdz incurred less client-server communication delay than MACAOrss

because it only needs two servers, instead of three. Figure 4.37 also shows that the bandwidth

reduction trick significantly reduced the client communication delay (the green bar with red filled
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pattern). This trick allows the client to send the authenticated share to only one server, thereby

making the client-communication overhead of MACAOrss and MACAOspdz schemes almost the same.

Server-Server communication is the second smallest portion of the total delay. We can also

see that the bandwidth reduction trick also helped to reduce the server-server communication in

MACAOrss scheme (the yellow bar with red pattern in Figure 4.37). The MACAOrss scheme had

higher inter-server communication delay than MACAOspdz since three servers communicated with

each other, compared with only two in MACAOspdz.

MACAO schemes harness the eviction strategy in [179] so that they incur a constant server

storage blowup. In MACAOrss, every server stores two authenticated shares of the ORAM tree so

that storage overhead per server is 8|DB| (i.e., 4 times blowup from [179]). On the other hand,

every server in MACAOspdz stores one authenticated shared ORAM tree, and therefore, the server

storage overhead is 4|DB| (2 times blowup from [179]). Regarding the client storage, MACAOrss

schemes add an extra of O(N log logN) bits to the storage overhead of [179], which is analytically

|N |log2N + log2(log2N) + 80|b| in total. Empirically, with 1TB DB and 256KB block size, the

client storage overhead of MACAOrss, MACAOspdz is 33.23 MB. With 1TB DB and 4KB block size,

it is 1.33 GB.

4.5.3.6 Performance with Varying Privacy Levels

We conducted an experiment to evaluate the performance of MACAOspdz and MACAOprf
spdz

schemes under higher privacy levels by increasing the number of servers. Due to RSS, we did not

evaluate MACAOrss and MACAOprf
rss since they incur significant server storage for high privacy levels.

Figure 4.38 outlines the delay of MACAOspdz and MACAOprf
spdz scheme under 1TB database with

4KB and 256KB block sizes. When increasing the number of servers, MACAOprf
spdz incurred much
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less delay than MACAOspdz, especially in the 256KB block size setting, since the client only sent

data to one server while the other servers generated authenticated shares on their own.

4.6 Oblivious Data Structures

Although ORAM can seal the access pattern leakage in any application, applying it straight-

forwardly may incur high communication, computation and monetary cost. On the other hand,

there are unique characteristics in certain applications that we can exploit to design more efficient

oblivious access alternatives. In this section, we propose several oblivious data structures, which

permit oblivious access protocols (e.g., ORAM, PIR) to be deployed more efficiently in the context

of searchable encryption and database services.

4.6.1 Distributed Data Structure for Oblivious Searchable Encryption

We propose a new oblivious access scheme over the encrypted index in DSSE that we call

Distributed Oblivious Data structure (DOD-DSSE). Our intuition is to leverage two non-colluding

servers and exploit the properties of an incidence matrix to seal information leakages in DSSE, while

incurring only a small-constant overhead. DOD-DSSE achieves the following desirable properties:

• High security : DOD-DSSE seals leakages from search and update operations on the encrypted

index and, therefore, it offers much higher security than traditional DSSE schemes. Specifically,

DOD-DSSE breaks the linkability between access operations on the encrypted index I, hides search

(i) and update (ii) patterns. This allows DOD-DSSE to prevent a server from learning whether or

not the same query is continuously repeated as well as the relationship between keywords and

files. Therefore, DOD-DSSE is secure against statistical attacks to which all traditional DSSE
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schemes are vulnerable due to leakages from the access patterns on the encrypted index. Table 4.5

summaries the security of DOD-DSSE, compared with traditional DSSEs.

• High efficiency : DOD-DSSE offers much lower bandwidth overhead and delay than applying

ORAM-based techniques (e.g., ODS [182]) to the encrypted data structure I. Our experimental

results indicate that DOD-DSSE is much faster than using ODS with Path ORAM protocol on

dictionary12 and incidence matrix13 data structures, respectively, in terms of end-to-end delay

(Table 4.5). DOD-DSSE only takes around one second to perform an access operation on a very

large data structure (see §4.6.1.4 for a detailed comparison).

• Formal security analysis and full-fledged implementation: We fully analyze the security and infor-

mation leakages of DOD-DSSE (§4.6.1.3). We provide a detailed implementation of DOD-DSSE

on two virtual Amazon EC2 servers and strictly evaluated the performance of DOD-DSSE on real

network settings (§4.6.1.4). We also released the implementation of DOD-DSSE for public use14.

These properties make DOD-DSSE an ideal alternative for privacy-critical cloud applications.

We briefly describe the main idea of DOD-DSSE as follows:

Existing DSSE schemes rely on a deterministic association between the (address) token of a

query and its corresponding encrypted result in the DSSE data structure. In other words, each query

x is represented by a deterministic address token-data tuple (ux, Iux) in the encrypted data structure

I. Despite permitting consistent and fast search/update operations, these deterministic relations leak
12Dictionary is a 〈key, value〉 structure such that given a keyword key, its corresponding value is a list of file IDs in
which key appears. This data structure offers sublinear search time, but leaks information due to its size depending
on the file IDs associated with key.

13Incidence matrix is a data structure which represents the relationship between keywords (indexing rows) and files
(indexing columns) via its cell value. For example, if matrix entry I[i, j] is set to 1, it means the keyword indexing
the ith row appears in the file indexing the jth column. Similarly, the I[i, j] entry is set to 0 if the keyword indexing
the ith row does not appear in the file indexing column j.

14Available at https://github.com/thanghoang/DOD-DSSE/
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the access pattern on the encrypted index defined in Definition 2. The research challenge is to devise

cryptographic methods that can create a random uniform address token-data tuple (ux, Iux) for each

query x in an oblivious way with just a small number of communication rounds and processing time.

DOD-DSSE achieves this by using a “fetch–reencrypt–swap” strategy between two servers as follows:

First, the client creates two encrypted data structures, each including address-data tuples

(ux, Iux) of all possible search and update queries, and then sends them to two non-colluding servers

(S0, S1), respectively. To perform a search or update operation, the client sends a search query

and an update query to each server. One query is for the real operation while the other three

are randomly selected (fake) queries (Figure 4.39, step (1)). Each server sends back to the client

the corresponding address-data tuples that have been queried. After that, the client decrypts the

received data to obtain the result (step (2)), and then re-encrypts them (step (3)). The client creates

new address-data tuple for each performed query by assigning re-encrypted data to a random address

(step (4)). Finally, the client swaps such address-data tuples and writes them back to the other

server (step (5)). That means the new address-data tuple of the query being read from server S0

will be written to server S1 and vice versa. This strategy makes each server observe a randomized

data structure-access pattern with only one-time repetition of a unlinkable query that has been

performed on the other server, provided that the two servers do not collude. §4.6.1.2 presents detailed

constructions of DOD-DSSE.

There are two limitations in our design. First, we assume that the two servers storing the

encrypted data structures are non-colluding; Second, DOD-DSSE leaks to each server Sb (b = 0, 1) a

one-time repetition of a query that was previously performed on the other server. This query cannot

be linked to any other queries performed on Sb and it never repeats on Sb again.
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Table 4.5: Security and performance of DOD-DSSE vs. its counterparts.

Scheme

Security Performance Setting
Data structure-access pattern Update

leakage
Query

result size
Statistical
attacks

End-to-end crypto
delay†

# Server1-time repetition of
an unlinkable query

Full query
linkability§

Traditional DSSE
[109],[138],[35],[189] 7 7 7 7 7 < 0.2 s 1
ODICT 3 3 7∗ 7∗ 3 192.2 s∗ 1
OMAT 3 3 3 3 3 767.5 s 1
DOD-DSSE 7‡ 3 3 3 3 1.1 s 2
We simulated the cost of ODS [182] with Path-ORAM protocol [169] on dictionary (ODICT) and incidence matrix (OMAT) data
structures.
† The delays of schemes were measured in our experiment with an average network latency of 31 ms and throughput of 30 Mbps.
‡ This leakage does not lead to any statistical attacks.
∗Due to the sublinear operation time of dictionary data structure, ODS cannot fully hide the length of search/update result without
fully padding which is very costly. To evaluate the performance of ODICT over the real network, we only simulated ODICT with
average padding.
§ Full query linkability allows the adversary to perform, for example, frequency analysis [124], resulting in statistical attacks.

We note that the performance and security benefits of DOD-DSSE well-justifies these limita-

tions. Furthermore, (i) two practical non-colluding servers can be found in real world as competitive

cloud providers such as Amazon, Microsoft and Google are very unlikely to collude against their

client. (ii) Indeed, we show that with minimal information leakage (i.e., one-time repetition of an

unknown and unlinkable query on the other server), DOD-DSSE seals all search/update patterns,

prevents statistical attacks which are main objectives of a secure DSSE. At the same time, it achieves

extremely efficient performance compared to using ORAM-based techniques. Therefore, DOD-DSSE

offers an ideal security-performance trade-off for DSSE.

4.6.1.1 System and Security Models

Our system model comprises a client and two servers S = (S0, S1), each storing an instance

of an encrypted data structure created from the same file collection.

Assumption 1. Servers communicate with the client via private channels. (i) (S0, S1) are honest-but-

curious, meaning that they show interest in learning information but follow the protocol faithfully;

they do not inject malicious inputs to the system. (ii) S0 and S1 do not collude.
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Îu35
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Figure 4.39: Search/update operation on the encrypted index in DOD-DSSE.

In DOD-DSSE, data request sequences (−→σ0, −→σ1) of length q by Definition 2 are independently

observed by servers (S0, S1), respectively. We assume that the encrypted data structure can store

up to N distinct data items, each corresponding with either a search or an update query. Each

item is represented by a unique address-data tuple (u, data) in the data structure. The security

of DOD-DSSE scheme relies on the fact that any access operations op
(b)
i ∈ −→σb observed by server

Sb, for all 1 ≤ i ≤ q are guaranteed to be unlinkable. This achievement enables us to protect the

data structure-access pattern in each server as defined in Definition 2. We define the unlinkability

property of access operations on the encrypted data structure in DSSE as follows:

Definition 12. Let (u
(b)
i , data

(b)
i ), (u

(b)
j , data

(b)
j ) be address-data tuples requested by access operations

(op
(b)
i , op

(b)
j ) ∈ −→σb observed by server Sb, respectively. op

(b)
i is called unlinkable to op

(b)
j if the

probability that 〈(u(b)
i , data

(b)
i ), (u

(b)
j , data

(b)
j )〉 represent the same item being accessed is 1

N , where N

is the number of distinct items stored in Sb.
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Note that this is the upper bound of linkability probability that one can infer from two

arbitrary tuples. The unlinkability in Definition 12 implies the DOD-DSSE security definition, which

is comparable to that of ORAM as follows:

Definition 13. DOD-DSSE on the server Sb leaks no information beyond ORAM (Definition 5) with

the exception of one-time repetition of an unknown and unlinkable query on the other server S¬b, to

which Sb does not have access.

We will give a detailed security analysis in §4.6.1.3 after presenting the construction of

DOD-DSSE in the following section.

4.6.1.2 The Proposed DOD-DSSE Scheme

We first describe the encrypted data structure used in DOD-DSSE, followed by several newly

proposed algorithms.

We first assume that f and w denote a file and a keyword, respectively. m and n denote

the maximum number of files and keywords in the dataset, respectively. f = (fid1 , . . . , fidm) denotes

the collection of files. An encrypted data structure enables encrypted search and update operations

for a keyword w or a file fid. We adopt a keyword-file incidence matrix to be the DSSE data

structure I due to its security and performance advantages, compared with other typical types such

as multi-linked list [109], dictionary [138], and tree [108]. For the sake of simplicity, we assume that

keywords are assigned to row indices while file IDs are assigned to column indices. We assume our

file collection f consists of m′ ≤ N unique keywords and n′ ≤ N file IDs, where N is the maximum

number of unique keywords and files that our I can support. We construct the encrypted index I(0)

for server S0 and I(1) for S1 as follows:
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First, we assign each item x, where x is a keyword or file ID, to a unique random address

in I(b) as u(b)
x

$← Lb for each b ∈ {0, 1}, where Lb is the set of unassigned row or column indices in

I(b). For security reasons which will be analyzed in §4.6.1.3, |L|= 2N . In other words, I is a square

matrix of size 2N × 2N to cover N keywords and files.

We represent the relationship between a keyword and a file by a cell value in I(b). I(b)[i, j] = 1

means the keyword w assigned to row i appears in the file assigned to column j in server Sb and

I(k)[i, j] = 0 otherwise. We can consider the data I
(b)
ux of item x as a row or column data which is a

binary string of length 2N representing the relationship between x and its object in server Sb. A

search or update query of x will correspond with retrieving a whole row or column respectively.

Finally, we encrypt every cell in I(b) using bit-by-bit IND-CPA encryption scheme with a

counter and a key as I(b)[i, j] ← Encτ
(b)
i I(b)[i, j], c

(b)
j , where c(b)

j is a counter derived from column

index j and a value a(b)
j in server Sb and τ

(b)
i is a row key derived from the row index i and a secret

key generated for server Sb. We store the information of a(b)
j in global counter arrays c(b) of length

2N which can be retrieved as a(b)
j ← c(b)[j], for each b ∈ {0, 1}. We describe detailed constructions

of I(0), I(1) in Figure 4.41. Figure 4.40 depicts the structure and content of I(0) and I(1).

We create data structures Tw, Tf stored on the client-side for keywords and files, respectively

which are defined as:

T : (H(x), 〈u(0)
x , u(1)

x , bx〉).

(Tw, Tf ) are used to keep track of the assigned addresses (u
(0)
x , u

(1)
x ) of each item x on servers (S0, S1),

respectively, as well as the server ID (i.e., bx ∈ {0, 1}) where it was last accessed. We define functions

for T as follows:
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Figure 4.40: Distributed encrypted index generated from the file collection.

• T.insert(key, value): insert hash of x (i.e., H(x)) as key and x’s information 〈u(0)
x , u

(1)
x , bx〉 as value

into T . It can accept null as key, in which the value (i.e, 〈u(0)
null, u

(1)
null, bnull〉) will be inserted into

empty slots in T .

• jx ← T.get(H(x)): find the index jx of x in T using its hash value H(x).

• jx ← T.lookup(u
(b)
x , b): find the index jx of x in T using its address ux on the server Sb.

Information about x can be retrieved via its index jx in T as (H(x), 〈u(0)
x , u

(1)
x , bx〉)← T [jx].

We can see that I is a 2N × 2N matrix storing the relationship between N unique keywords

and N files. There are at least N empty rows and N empty columns in I. We also include in Tw, Tf

sets of such “dummy” addresses in I(0), I(1), denoted as Tw.L0, Tw.L1, for keywords and Tf .L0, Tf .L1

for files respectively. This is to achieve the consistency of DOD-DSSE data structure and security

(see §4.6.1.3).
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(K,Tw, Tf , I
(0), I(1))← DOD-DSSE.Init(κ, f):

1: Initialization: Set Tw, Tf to be empty
I′

(b)
[i, j]← 0 and c(b)[j]← 1, for all 1 ≤ i ≤ 2N , 1 ≤ j ≤ 2N and for each b ∈ {0, 1}

Tx.Lb ← {1, 2, . . . , 2N} for each x ∈ {w, f} and b ∈ {0, 1}
2: K ← DOD-DSSE.Gen(1κ)
3: Extract unique keywords w = (w1, . . . , wm′) from files f = (fid1 , . . . , fidn′ )

# Create unecnrypted data structure I′
(0) for server S0, I′

(1) for server S1

4: for each wi ∈ {w1, . . . , wm′} do
5: (u

(0)
i , u

(1)
i , Tw)← DOD-DSSE.Assign(H(wi), Tw)

6: for each idj ∈ {id1, . . . , idn′} do
7: (v

(0)
j , v

(1)
j , Tf )← DOD-DSSE.Assign(H(idj), Tf )

8: if wi appears in fidj then
9: I′

(0)
[u

(0)
i , v

(0)
j ]← 1, I′(1)

[u
(1)
i , v

(1)
j ]← 1

# Reserve row and column indices for new keywords and files being added in the future
10: Call DOD-DSSE.Assign(null, Tx) multiple times until all values in all N slots in Tx are filled, for each

x ∈ {w, f}

# Encrypt every row of data structures I′
(0) and I′

(1)

11: for each server Sb ∈ {S0, S1} do
12: I(b)[i, ∗]← DOD-DSSE.Enc(I′

(b)
[i, ∗], i, b,K) for each row i ∈ {1, . . . , 2N}

13: return (K,Tw, Tf , I
(0), I(1))

Figure 4.41: DOD-DSSE setup algorithm.

We present detailed implementations of DOD-DSSE in three main algorithms with four

subroutines. We provide in Figure 4.46 the decryption procedure for a row/column data of I. The

encryption procedure DOD-DSSE.Enc() is not explicitly defined and it works similarly by substituting

Dec for Enc in lines 4 and 8 of Figure 4.46.

The main operation of DOD-DSSE is presented in Figure 4.42. First, the client generates for

each server one search and one update queries including two row indices (one is dummy) and two

column indices (one is dummy) as in Figure 4.45 (step 1). The client reads data in such addresses

from the servers and decrypts only data in non-dummy addresses (steps 2 – 7). After that, the client

can perform an actual search or update operation over the decrypted data (steps 8–11). Finally, the

decrypted data are re-encrypted with new counters and written back to addresses in the server from

where they were read as well as the dummy addresses in the other server (steps 17–21). Notice that

such data need to be updated before re-encryption to preserve keyword-file relations (steps 15–16),
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id← DOD-DSSE.Access(op, x,S,K, Tw, Tf ):
# Generate search and update queries

1: ({u(b)
j , ut

(b)
j }j∈{w,f},b∈{0,1}, β)← DOD-DSSE.CreateQueries(H(x))

2: for each j ∈ {w, f} do
# Retrieve from each server 2 columns or 2 rows depending on index j

3: for each server Sb ∈ {S0, S1} do
4: I

(b)
uj ← Read(u

(b)
j ) from Sb

5: I
(b)
utj
← Read(ut

(b)
j ) from Sb

# Decrypt retrieved row and column
6: I′

(b)
uj ← DOD-DSSE.Dec(I

(β)
uj , u

(β)
j , β,K)

7: I′
(¬b)
utj
← DOD-DSSE.Dec(I

(¬β)
utj

, ut
(¬β)
j ,¬β,K)

8: if op = search then
9: Extract column index from I′

(β)
uw as id← (y1, . . . , yl), where I′

(β)
uw [yk] = 1 for each yk ∈ {1, . . . , 2N}\Tf .Lβ ,

1 ≤ k ≤ l
10: else
11: Update list of keywords in I′

(β)
uf and key in Tf , Tw corresponding with the file being updated

12: for each j ∈ {w, f} do
# Update new address of non-dummy column and row data in the other server

13: Tj ← DOD-DSSE.UpdateT(Tj , u
(β)
j , β, u

(¬)
¯j )

14: Tj ← DOD-DSSE.UpdateT(Tj , ut
(¬β)
j ,¬β, ut(β)

j )

15: Update cell values in I′
(β)
uj and I′

(¬β)
utj

to preserve keyword-file relations with changes at steps 13, 14

16: Create (I′(¬β)
uj , I′(¬β)

uj ) based on I′
(β)
uj , (I

′(¬β)
utj

) respectively to preserve keyword-file relation consistency
in both servers

# Increase all counter values in global counter arrays
17: c(b)[i]← c(b)[i] + 1 for each b ∈ {0, 1} and i ∈ {1, . . . , 2N}
18: for each j ∈ {w, f} do
19: for each server Sb ∈ {S0, S1} do

# Re-encrypt retrieved data with newly updated counters
20: Î

(b)
uj ← DOD-DSSE.Enc(I′

(b)
uj , u

(b)
j , b,K), Î(b)

utj
← DOD-DSSE.Enc(I′

(b)
utj
, ut

(b)
j , b,K)

# Write re-encrypted data back to corresponding server Sb
21: Write(u

(b)
j , Î

(b)
uj ), upData(ut

(b)
j , Î

(b)
utj

) to Sb

22: return id

Figure 4.42: DOD-DSSE access protocol.

and their new addresses in the other server are updated in hash tables (steps 12–16) so that they

can be retrieved correctly in subsequent operations.

4.6.1.3 Security Analysis

Let (−→σ0,
−→σ1) be a query sequence of length q sent to servers (S0, S1) respectively. By

Definition 2, the access patterns 〈AP0(−→σ0),AP1(−→σ1)〉 observed by (S0, S1), respectively, are:
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K ← DOD-DSSE.Gen(1κ):
# Generate keys to encrypt two data structures

1: k0 ← E .Gen(1κ), k1 ← E .Gen(1κ)
2: return K ← (k0, k1)

Figure 4.43: DOD-DSSE key generation algorithm.

(u
(0)
x , u

(1)
x , T )← DOD-DSSE.Assign(x, T )

# Pick a random address from dummy set in each server
1: for each b ∈ {0, 1} do
2: u

(b)
x

$← T.Lb
3: T.Lb ← T.Lb \ {u(b)

x }

# Randomly assign server ID for x

4: bx
$← {0, 1}

# Store assigned info of x in hash table
5: T.insert

(
x, 〈u(0)

x , u
(1)
x , bx〉

)
6: return (u

(0)
x , u

(1)
x , T )

Figure 4.44: DOD-DSSE assign subroutine.

AP0 = {access(x(0)
1 ), . . . , access(x(0)

i ), . . . , access(x0
q)}

AP1 = {access(x(1)
1 ), . . . , access(x(1)

i ), . . . , access(x(1)
q )},

(4.16)

access(x(b)
i ) = ({read(u

(b)
j,ti, I

(b)
uj,ti)}, {write(u

(b)
j,ti, Î

(b)
uj,ti)}) , for j ∈ {w, f}, 1 ≤ t ≤ 2 , b ∈ {0, 1}

and 1 ≤ i ≤ q performing read-then-write operations on the server Sb, given a DOD-DSSE.Access

operation opi (Figure 4.42) at step i. Each address-data tuple (u
(b)
j,ti, I

(b)
uj,ti) comprises a random row

or column address and an IND-CPA encryption output, respectively.

Remark 3. Due to the properties of the square incidence matrix data structure, rows and columns

intersect each other and have the same length. For each actual operation, DOD-DSSE performs a

search query and an update query to each server Sb. This prevents Sb from determining (i) if the

actual intention of the client is to search or to update, and (ii) which data-address tuple corresponds

with search or update query. These properties prevent Sb from separately forming search and update

patterns defined in Definition 3.
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(U , )
¯
← CreateQueries(x):

# Get hash table entry for x and its info
1: jx ← Tx.get(x)
2: β ← Tx[jx].bx

3: u
()
x̄ ← Tx[jx].u

(β)
x

# Select a random non-dummy row/column index u
(β)
x̄ .

# If x is w then x̄ is f and vice-versa

4: u
()
¯̄x

$← {1, . . . , 2N} \ Tx̄.Lβ

5: for each j ∈ {w, f} do
# Select a random non-dummy index from server S¬β

6: u
(¬β)
j

$← {1, . . . , 2N} \ Tj .L¬β
# Randomly select dummy row & column indices in S0, S1

7: for each b ∈ {0, 1} do
8: ut

(b)
j

$← Tj .Lb
9: return (U , β), where U = {u(b)

j , ut
(b)
j }j∈{w,f},b∈{0,1}

Figure 4.45: DOD-DSSE query creation subroutine.

I′u ← DOD-DSSE.Dec(Iu, u, b,K):
1: if u is a row index then
2: τ

(b)
u ← KDF(kb||u)

3: for j = 1 . . . , 2N do
4: I′u[j]← Decτ

(b)
u Iu[j], j||c(b)[j]

5: else # if u is a column index
6: for i = 1 . . . , 2N do
7: τ

(b)
i ← KDF(kb||i)

8: I′u[i]← Decτ
(b)
i Iu[i], u||c(b)[u]

9: return I′

Figure 4.46: DOD-DSSE decryption subroutine.

Remark 4. Data items associated with search and update queries are located in two independent address

spaces (i.e., row index vs. column index) and, therefore, their access operations are independent from

each other. For the sake of brevity, we only analyze the security of search queries. The same analysis

can be applied to update queries. From now on, whenever we say data Iux of the query x at address

ux, we mean the row data corresponding with the search query along with its row index.

According to the unlinkability definition (Definition 12) and DOD-DSSE access scheme in

Figure 4.42, we define in Definition 14 the unlinkability property of a data item which is read from
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T ← DOD-DSSE.UpdateT(T, qIdx , b,nIdx ):
# Get hash table entry for qIdx in Sb

1: jx ← T.lookup(qIdx, b)

# Update hash table with new entry nIdx and server b

2: oIdx ← T [j].u
(¬b)
x

3: T [jx].u
(¬b)
x ← nIdx

4: T [jx].bx ← ¬b
# Remove nIdx from dummy set T.L¬b and add oIdx to it

5: T.L¬b ← T.L¬b ∪ {oIdx} \ {nIdx}
6: return T

Figure 4.47: DOD-DSSE client state update subroutine.

server S¬b, and its new representation is then written to Sb under Sb’s view. We then show in

Lemma 9 that any access patterns observed by servers (S0, S1) in our scheme are unlinkable to each

other by Definition 14 under Lemma 9. Finally, we prove that DOD-DSSE achieves our main security

notion (Definition 13) in Theorem 6.

Definition 14. Let (u
(b)
x , I

(b)
ux ) represent an item x in a set I(b) of N distinct data items on server

Sb such that u(b)
x 6= u

(b)
x′ and I

(b)
ux 6= I

(b)
ux′ for each x

′, x ∈ I(b) and x 6= x′. (ut
(b)
x′′ , Î

(b)
utx′′

) ∈ APb (as in

(Equation 4.16)) is a new representation of an arbitrary data item x′′ ∈ D, which has just been

accessed on server S¬b. In DOD-DSSE, (ut
(b)
x′′ , Î

(b)
utx′′

) is unlinkable to I(b) if and only if the probability

that (ut
(b)
x′′ , Î

(b)
utx′′

) represents the same item with any tuples (u
(b)
x , I

(b)
ux ) for each x ∈ I(b) is 1

N .

Lemma 9. Under 1, any access patterns observed by Sb and S¬b as in (Equation 4.16) are unlinkable

with each other by Definition 12.

Proof. For each DOD-DSSE operation xi (Figure 4.42), server Sb observes that two address-data

tuples are accessed per search query simultaneously. One of them is to read while the other is to

write data being read from S¬b. The data from all accessed addresses are IND-CPA re-encrypted

with new counters before being written back (Figure 4.42, steps 17, 20) so that it is computationally
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indistinguishable for Sb to determine which address is being read or written. To begin with, we show

that access(x(b)
i ) is unlinkable to access(x(¬b)

i ) as follows:

We first analyze the address-data tuple denoted as (u(b), I
(b)
u ), which is read and observed by

Sb. I
(b)
u is decrypted into I′(b)u and then is IND-CPA re-encrypted with a new counter before being

written to S¬b (steps 17, 20). I′ is assigned by the client to a new random index selected from a

set of dummy addresses in S¬b as u(¬b) $← Tw.L¬b, which is independent from u(b). Under 1, Sb

does not have a view on S¬b and vice versa. So, Sb does not know if I′ is assigned to which u(¬b)

in S¬b and under which new encryption form Î. Therefore, (u(b), I
(b)
u ) can represent the same item

with any address-data tuples (u(¬b), I
(¬b)
u ) in S¬b with the same probability of 1

N , where N is the

number of items in S¬b. By Definition 14, (u(b), I
(b)
u ) is unlinkable to any items in S¬b from Sb’s view.

Considering the S¬b’s view, S¬b also does not know which address-data tuple (u(b), I
(b)
u ) was read

from Sb under 1. Meanwhile, Î is a IND-CPA encryption so that it looks random-uniform to all other

data in S¬b. Moreover, the address associating with Î is selected randomly from the set of dummy

addresses L¬b with |L¬b|= N . It is oblivious for S¬b to link Î to any item which will be queried

subsequently. Notice that to achieve this obliviousness, it is mandatory to always keep |L¬b| = N .

Once the new IND-CPA encryption form Î of an item is written to new address u(¬b) in S¬b, its old

address in S¬b will be set to dummy and included to L¬b by the client (Figure 4.47, steps 2, 5).

We next consider search address-data tuple denoted as (ut(b), Î
(b)
ut ) which is written to Sb

under Sb’s view. This tuple is the new representation of an arbitrary item which has just been

queried from S¬b. As DOD-DSSE access operations on servers Sb and S¬b are symmetric, meaning

that Sb can act as S¬b in the aforementioned analysis and vice versa. Therefore, the same analysis is

applied to this case.
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Finally, we show that if each pair (access(x(b)
i ), access(x(¬b)

i )) is pairwise unlinkable to each

other, for all 1 ≤ i ≤ q, then access(x(b)
i ) is also unlinkable to others access(x(¬b)

j ) for all 1 ≤ j 6= i ≤ q.

Without loss of generality, we assume that j < i. As (access(x(b)
j ), access(x(¬b)

j )) is pairwise unlinkable,

meaning that given access(x(b)
j ) observed by Sb, the corresponding access(x(¬b)

j ) generated in S¬b is

oblivious from Sb’s view. It is computationally infeasible for Sb to link access(x(b)
i ) with any access

patterns access(x(¬b)
j ) generated in S¬b by just observing access(x(b)

j ). The same principle applies to

S¬b as operations on two servers are symmetric. Hence, the Lemma 9 holds.

Corollary 7. For any access pattern observed by Sb (or S¬b), the same query will result in the same

address being accessed on Sb (or S¬b), at most twice.

Proof. Assume that at step i the real query x is performed and its corresponding data item is read

from address u(b)
x in server Sb. According to DOD-DSSE scheme, data of x will be written to an

arbitrary address u(¬b)
x in S¬b (Figure 4.42, step 21). Given that the same query x is performed

again at step j > i, its data will be read from S¬b so that S¬b can observe the address u(¬b)
x accessed

at step i is now accessed again. By this access pattern, S¬b can infer the same query is performed

at step i and j on it. However from Sb’s view, it is oblivious for Sb to determine if the data being

written to an arbitrary address ut((b))x at step j is associated with the query x at step i due to

Lemma 9. Now assume that at step k, where k > j > i, the query x is performed again. It will

be read from Sb and then written to S¬b. Similar to that of Sb at step j, S¬b observes an access

operation which is unlinkable to access operations generated at step j and i by Lemma 9. It can be

easily seen that the same query only generates the same address access at most two times. Therefore,

the corollary holds.
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Theorem 6. Given a server Sb, DOD-DSSE achieves security by Definition 13, meaning that DOD-DSSE

leaks no information beyond ORAM security definition with the exception of one-time repetition of

an unlinkable query on the other S¬b, to which Sb does not have access.

Proof. Given an access pattern APb of length q as in (Equation 4.16) observed by server Sb, denote

Yq as the set of all possible combinations y of N data items, where |y|= q. We have N q possible

strings as |Yq|= N q. Let u(b)
i,1 , u

(b)
i,2 be read and write addresses for search query observed by Sb,

respectively, given a data access request access(x(b)
i ). From Sb’s view, data item of the real query xi

(denoted as I′xi) can be accessed from u
(b)
i,1 , or u

(b)
i,2 (i.e., I′xi is actually accessed from S¬b and then

written to Sb). By Lemma 9, we have:

Pr(access(x(b)
i )) =

2∑

j=1

1

2

[
Pr(pos(I′xi) = u

(b)
i,j ) Pr(u

(b)
i,j ∈ Tw.Lb)

+ Pr(pos(I′xi) = u
(b)
i,j ) Pr(u

(b)
i,j 6∈ Tw.Lb)

]
=

2∑

j=1

1

2

[
1

N

1

2
+

1

N

1

2

]
=

1

N
.

Notice that given a real query xi, Figure 4.42 generates two random row indices on each

server Sb: one is from the set of dummy addresses and the other is from from the set of non-empty

addresses. Such addresses are removed from their current set and included in the other set. This is

to maintain the size of each set so that given another real query xj 6= xi, its generated addresses

are randomly chosen from size-consistent sets, making it independent of each other. Hence, from

Sb’s observation, access patterns generated by access(x(b)
i ) are computational indistinguishable from

those generated by access(x(b)
j ), given that xj 6= xi.

For xj = xi, with q ≥ j > i ≥ 1, we have two cases:
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1. If pos(I′xi) = u
(b)
i,1 then pos(I′xj ) = u

(b)
j,2, meaning I′xi is read from Sb, while I′xj is read from S¬b.

By Lemma 9, data in uj,2 is unlinkable to any data items in Sb. Therefore, access(x(b)
j ) generates

an access pattern which is statistically independent from access(x
(b)
i ) in server Sb.

2. If pos(I′xi) = u
(b)
i,2 then pos(I′xj ) = u

(b)
j,1, meaning Ixi is read from S¬b and I′xj is read from Sb.

Sb observes that the same address is accessed again (i.e., u(b)
j,1 = u

(b)
i,2). By Lemma 9, data

from u
(b)
i,2 is written to S¬b which is unlinkable to any data items in S¬b; the probability that

Sb can determine if I′xj is re-written back to it in subsequent access operations is 1
N . That

means given another query xk such that xk = xj = xi, with k > j > i, the access pattern

generated by access(x(b)
k ) is statistically independent from access(x(b)

j ) as in case (i). Therefore,

the information DOD-DSSE leaks in this case is that the same query can generate the same

address access at most twice, as shown in Corollary 7.

To sum up, we have Pr(APb) =
∏q
j=1 Pr(access(x(b)

j )) =
(

1
N

)(q−r), where r is the number of one-time

repetitions of data access requests as in case (ii). There are N (t−r) possible strings y ∈ Yq that can

generate the same APb so that it is computationally indistinguishable for Sb to determine which

string in N (t−r) candidates generates the APb. In the worst case, where there are r = q/2 repetitions

in the data request sequence of length q, then Pr(APb) =
(

1
N

)q/2.

In traditional DSSE, each search or update query on a keyword or a file produces the same

address being accessed for consistency purposes. This deterministic relation between queries and

address tokens permits an adversary to perform statistical attacks, such as query frequency analysis,

to uncover the relations among keyword/file being accessed [34, 103, 124, 190].

In DOD-DSSE, queries observed in each server are unlinkable by Definition 12 to each other,

meaning that they can be independently generated by any possible keywords/files, from the server’s
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view. DOD-DSSE achieves the security by Definition 13 in that, the only information that server

Sb can infer from its observed access pattern is one-time repetition of an arbitrary query, which is

previously performed on the other server S¬b. Note that servers do not have a view of each other’s

accesses or queries (i.e., non-colluding servers). This leakage is negligible for any practical setting,

and does not permit to establish any statistical relationship, since one-time repetitions are unlinkable.

These security guarantees imply that DOD-DSSE can not only prevent statistical analysis (e.g., [124])

but also any other potential threats that may exploit the linkability among arbitrary queries.

4.6.1.4 Experimental Evaluation

We evaluated the performance of our scheme on real network settings with different network

latencies. By latency, we mean the round-trip time taken by a packet to go from the host (i.e.,

client) to the destination (i.e., server) and back. In addition, we made several comparisons. First, we

compared our scheme’s cryptographic end-to-end delay (i.e., the time to completely process a search

or update operation) with a traditional DSSE scheme which does not hide the access pattern (e.g.,

[189]). We then compared to a simulated scheme which applies ORAM on a DSSE dictionary data

structure and matrix data structure15. We notice that in order to be comparable with ORAM, which

can achieve oblivious operations (i.e., whether the operation is search or update), our DOD-DSSE

scheme is designed to always perform both search and update queries regardless of the type of actual

operation which is required. Therefore, search and update operations require the same amount of

time. This is in contrast with traditional DSSE schemes in which search and update operations

incur different delays. This will be shown in the following experiments.
15We did not implement the full scheme, we estimated the performance by simulation in a real network setting and
assuming a 4 KB block-size ORAM as presented in [169, 182].
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Figure 4.48: End-to-end cryptographic delay with in-state network latency.
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Figure 4.49: End-to-end cryptographic delay with out-state network setting.

We used a HP Z230 Desktop as the client and two virtual servers provided by Amazon EC2.

The client machine was installed with CentOS 7.2 and equipped with Intel Xeon CPU E3-1231v3 @

3.40GHz, 16 GB RAM and 256 GB SSD. We deployed servers running Ubuntu 14.04 with m4.4xlarge

instance type which offers 16 vCPUs @ 2.4 GHz, Intel Xeon E5-2676v3, 64 GB RAM and 200 GB

SSD for each server.

We adopted Google sparse hash table16 to implement the data structures Tf , Tw stored at

the client side. We implemented IND-CPA encryption and decryption schemes using AES-CTR

mode as it supports parallelism and key pre-computation. We used AES-128 CMAC to implement
16https://github.com/sparsehash/sparsehash
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the hash function H. For cryptographic primitives, we utilized libtomcrypt17 with Intel AES-NI

hardware accelerated library18 to optimize the performance of cryptographic operations. We used

ZeroMQ library19 to implement network communication between client and server(s).

We performed our experiments on the Enron email dataset20. We selected subsets of the

Enron corpus to construct the DSSE data structure with various combinations of keyword-file pairs,

ranging from 108 to 9× 1010. This is to evaluate the performance of DOD-DSSE and its counterparts

with different dataset sizes starting from small to very large similar to [35].

We first measured the pre-processing time to build the encrypted data structures in

DOD-DSSE with different sizes. With the largest data structure being experimented, which consists

of 9× 1011 keyword-file pairs (i.e., 300,000 files and 300,000 keywords), it takes the client roughly

20 hours to construct two encrypted incidence matrices. For 108 keyword-file pairs, the time is 30

seconds. Notice that this initialization phase is only run one time in the offline phase so that its

cost is not an important factor. Our focus is to evaluate the performance of DOD-DSSE and its

counterparts in the online phase, where we perform search and update operations on the constructed

data structure(s).

Next, we showed the performance of DOD-DSSE scheme in the online phase. We created

two Amazon EC2 servers in the same geographical region (i.e., in-state), resulting in an average

network latency of 11 ms and throughput of 100 Mbps. It takes approximately 800 ms to perform a

search (or update) operation on the distributed data structure consisting of 9× 1011 keyword-file

pairs, as demonstrated in Figure 4.48.
17http://www.libtom.org/LibTomCrypt/
18https://software.intel.com/articles/download-the-intel-aesni-sample-library
19http://zeromq.org/
20https://www.cs.cmu.edu/∼./enron/
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Table 4.6: Total size of encrypted data structure(s) in GB.

# keyword-file pairs DOD-DSSE† DSSE [189] ODICT OMAT
108 0.1 0.02 1.37 0.05

2.5× 109 2.4 0.6 37.38 1.16
1010 10 2.4 149.54 4.66

2.25× 1010 22.4 5.6 336.46 10.48
4× 1010 40 10 598.15 18.63

6.25× 1010 62.4 15.6 934.60 29.10
9× 1010 90 22.4 1345.83 41.91

† DOD-DSSE stores two encrypted data structures in two non-colluding
servers so that the storage cost for each server will be a half of presented
numbers.

We compared the actual cost of DOD-DSSE with that of our counterparts. We selected the

scheme in [189] to be our main traditional DSSE counterpart as, to the best of our knowledge, it is

the most secure DSSE scheme in the literature. We used Path ORAM [169] protocol for ODS as it

offers optimal bandwidth overhead. We simulated the cost of using ODS on a dictionary (denoted

as ODICT) and a square incidence matrix (denoted as OMAT) data structures because the former

provides sublinear operating time while the latter achieves the best security. We applied an average

padding strategy to mitigate the information leakage from ODICT due to the optimal search/update

time property.

We analyzed the asymptotic communication complexity of the aforementioned schemes.

Traditional DSSE achieves optimal bandwidth overhead of O(r), where r is the number of data

corresponding with the search/update query [189]. In ODS approaches, keyword-files pairs are

packaged into 4KB blocks, and the total number of blocks is denoted as B. Given a search/update

operation, the number of blocks being transmitted by OMAT and ODICT is s · c · O(logB) and

s′ · c ·O(logB), respectively, where c = 4 is the bucket size in Path ORAM [169] and s, s′ are the

numbers of communication rounds to retrieve sufficient results for the query [182]. In DOD-DSSE,

the bandwidth complexity is 4 ·O(N), where N is the maximum number of unique keywords/files

that DOD-DSSE can support.
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After that, we benchmarked the actual performance of DOD-DSSE and its counterparts

in practice based on the previous asymptotic communication analysis. Figure 4.48 demonstrates

the actual end-to-end cryptographic delay (i.e., encryption, transmission delays) of schemes using

in-state Amazon EC2 server(s) with various data structure sizes. We can see that DOD-DSSE incurs

a small-constant communication overhead due to extra queries (i.e., 4x times slower than traditional

DSSE). However, it is approximately 50x and 210x times faster than ODICT and OMAT which

specifically take 42 and 167 seconds to perform an operation on the large data structure, respectively.

This indicated that even though the asymptotic complexity of ODS approaches looks very efficient,

hidden constants such as c, s, s′ actually contribute a lot to the communication overhead, as shown

in Figure 4.48.

We inspected the cost of DOD-DSSE to investigate the impacts of network communication

and cryptographic operations on the end-to-end delay. We observed that the majority of the delay

is due to network transmission, in which the ratio between it and cryptographic operations is

roughly 8:1. To investigate more the impact of network latency and throughput on DOD-DSSE and

its counterparts, we setup two EC2 servers geographically located outside of our state, resulting

in a network latency and throughput of 31 ms and 30 Mbps, respectively. As it can be seen

in Figure 4.49(b), this geographically distributed out-state environment makes DOD-DSSE and

traditional DSSE perform approximately 200 ms and 100 ms slower than in-state setting, respectively.

Due to the characteristics of ODS requiring a number of communication rounds to perform a search

or update operation, slower network latency and throughput significantly impact the performance of

ODICT and OMAT. We can see that DOD-DSSE is now 170x and 690x times faster than ODICT

and OMAT, respectively by this setting. Comparing with the in-state configuration, ODICT and
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OMAT are both 4.5x times slower than their in-state version. This implies 12.78 minutes and 3.2

minutes to accomplish an operation, respectively (Figure 4.49(a)).

Finally, we analyzed the storage cost of DOD-DSSE. With the largest dataset being experi-

mented in this study (i.e., 9× 1011 keyword-file pairs), DOD-DSSE requires approximately 35 MB

to store at the client side all necessary information for its operation such as symmetric keys, Tf , Tw

and global counter arrays. This can be easily fulfilled even by resource-limited devices such as a

smartphone or a tablet. Table 4.6 shows the total size of the encrypted data structure(s) stored at

the server side required by DOD-DSSE and its counterparts with different dataset sizes. DOD-DSSE

requires 8x and 2x times as much storage space as that of traditional DSSE and OMAT, respectively,

and yet, is much more compact than ODICT using dictionary21. Considering the advantages of

DOD-DSSE in terms of efficiency, storage cost and achieved security aspects over traditional DSSE

and ORAM-based methods, our scheme is likely to be an ideal security-performance trade-off DSSE

scheme for privacy-critical cloud computing.

4.6.2 ODSE: Oblivious Dynamic Searchable Encryption

In DSSE, it is highly desirable to seal access pattern leakages when accessing the encrypted

index (I) and encrypted files (f). Since the size of individual files in F can be arbitrarily large and

each search/update query might involve with a different number of files, to the best of our knowledge,

generic ORAM seems to be the only option for oblivious access on f. In this work, we focus more on

oblivious access techniques on the index (I) that are more bandwidth-efficient than using generic

ORAM (Figure 4.50). Specifically, we propose ODSE, a comprehensive oblivious encrypted index

framework in the multi-server setting with the application to DSSE. The framework contains three
21We would like to notice an advantage of dictionary over matrix structure. That is, it is not limited by the number of
unique keywords and files, but only the maximum number of keyword-file pairs which might be useful for applications
requiring diverse keyword-file relations.
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ODSE schemes including ODSEwo
xor, ODSEwo

ro and ODSEwo
it each offering various performance and

security properties as follows.

• Full obliviousness with information-theoretic security: ODSE seals information leakages when

accessing the encrypted index that might lead into statistical attacks. Our constructions hide

the index-access pattern, and therefore provide forward- and backward-privacy and secrecy

of the query types (search/update). ODSEwo
xor and ODSEwo

ro offers computational security for

the encrypted index as well as access operations on it. On the other hand, ODSEwo
it provides

information-theoretic statistical security (see §4.6.2.3).

• Low end-to-end delay: All ODSE schemes offer low end-to-end-delay, which are 3×-57× faster

than using generic ORAM atop the DSSE encrypted index (with optimization [67]) under real

network settings.

• Robustness against malicious adversary: In the present work, we provide secure methods not

only in the honest-but-curious setting but also in the malicious environment. Our ODSE schemes

offer various levels of robustness in the distributed setting. In the semi-honest setting, ODSEwo
ro

and ODSEwo
it are robust against corrupted servers that do not respond due to system/network

failure. All ODSE schemes can be extended to be secure against malicious adversary. Specifically,

the extended ODSEwo
xor scheme can detect if there exists any malicious server in the system (but

without knowing which server it is). The extended ODSEwo
ro and ODSEwo

it schemes can not only

detect which server(s) is malicious, but also be robust against incorrect replies by malicious

servers.

• Full-fledged implementation and open-sourced framework: We fully implemented all the proposed

ODSE schemes, and evaluated their performance on real-cloud infrastructure. To the best of our
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Figure 4.50: ODSE research objective and high-level approach.

knowledge, we are among the first to open-source an oblivious access framework for the encrypted

index in DSSE. The code is available at https://github.com/thanghoang/ODSE.

4.6.2.1 System and Threat Models

Our system model comprises a client and ` servers S = (S1, . . . , S`), each storing a version of

the encrypted index. The encrypted files are stored on a separate server different from S (as in [92]),

which can be obliviously accessed via a generic ORAM scheme [150, 169]. We focus only on oblivious

access on distributed encrypted index I on S. We present the definition of ODSE as follows.

Definition 15. An Oblivious Distributed Dynamic Searchable Symmetric Encryption (ODSE) scheme

is a tuple of one algorithm and two protocols ODSE = (Setup, Search,Update), where the input and

the output for the client and the servers are separated with semicolon such that:

1. (σ, I)← Setup(f): Given a set of files f as input, the algorithm outputs a distributed encrypted

index I and a client state σ.
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2. (R;⊥)← Search(w, σ; I): The client inputs a keyword w to be searched and the state σ; the

servers input the distributed encrypted index I. The protocol outputs to the client a set R

containing file identifiers, in which w appears.

3. (σ′; I ′) ← Update(fid, σ; I): The client inputs the updated file fid and a state σ; the servers

input the distributed encrypted index I. The protocol outputs a new state σ′ and the updated

index I ′ to the client and servers, respectively.

In our system, the client is trusted and the set of servers S are untrusted. We first consider

the servers to be semi-honest, meaning that they follow the protocol faithfully, but can record the

protocol transcripts to learn information regarding the client’s access pattern. Later, we show that

our framework can be extended to be secure against malicious servers that can tamper with the

input data to compromise the correctness and the security of the system (§4.6.2.4). We allow up to

t < ` (privacy parameter) servers among S to be colluding, meaning that they can share their own

recorded protocol transcripts with each other. Formally, the security of ODSE in the semi-honest

setting can be defined as follows.

Definition 16 (ODSE security w.r.t. semi-honest adversary). Let −→o = (op1, . . . , opq) be an operation

sequence, where opi ∈ {Search(w, σ; I),Update(fid, σ; I)}, w is a keyword to be searched and fid is a

file with identifier id whose relationship with unique keywords in the distributed encrypted index I

need to be updated, and σ denotes a client state information. Let ODSEj(−→o ) represent the ODSE

client’s sequence of interactions with server Sj , given an operation sequence −→o .

An ODSE is correct if for any operation sequence −→o , {ODSE1, . . . ,ODSE`} returns data

consistent with −→o , except with negligible probability.
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An ODSE is t-secure if ∀L ⊆ {1, . . . , `} such that |L|≤ t, for any two operation sequences

−→o 1 and −→o 2 where |−→o 1|= |−→o 2|, the views {ODSEl∈L(−→o 1)} and {ODSEl∈L(−→o 2)} observed by a

coalition of up to t servers are computationally indistinguishable.

By Definition 15, keyword search and file update are the two main operations in searchable

encryption. Given that these operations might incur different procedures, we can trigger both search

and update protocols for any actual action to achieve the operation obliviousness according to

Definition 16. In this case, the server can guess (at best) with a probability of 1
2 what operation the

client is performing “in real” i.e. either search or update.

4.6.2.2 The Proposed Semi-Honest ODSE Schemes

In DSSE, keyword search and file update on I are read-only and write-only operations,

respectively. This property permits us to leverage specific bandwidth-efficient oblivious access

techniques for each operation such as multi-server PIR (for search) and Write-Only ORAM (for

update) rather than using a generic ORAM. The second requirement is to identify a suitable data

structure for I so that these bandwidth-efficient techniques can be adapted. In DSSE, forward

index and inverted index are the ideal choices for the file update and keyword search operations,

respectively as proposed in [82]. However, performing search and update on two isolated indexes will

lead to inconsistency. The server might perform a synchronization to make two indices consistent;

however, this will leak significant information regarding the client query and file content. Therefore,

to avoid this problem, it is mandatory to seek a data structure, where both search index and update

index can be integrated together. Fortunately, this can be achieved by harnessing a two-dimensional

index (i.e., matrix), which allows keyword search and file update to be performed in two separate

dimensions without creating any inconsistency at their intersections. This strategy permits us to
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Table 4.7: ODSE symbols and notation.

Symbol Description
n,m Maximum number of files and keywords in DB.
I Incidence Matrix Index
n′ Number of (dlog2 pe − 1)-bit blocks (i.e., n′ = d n

dlog2 pe−1
e).

Tf , Tw Static hash tables for files and keywords.
D Set of dummy (empty) columns
S Stash to (temporarily) store column data
c Column counter vector

perform computation-efficient (multi-server) PIR on one dimension, and communication-efficient

(Write-Only) ORAM on the other dimension to achieve oblivious search and update, respectively.

In the following, we first describe the data structures used in ODSE framework, and then

present semi-honest ODSE schemes in details. We analyze the security of ODSE schemes and present

their extension into malicious setting in §4.6.2.3 and §4.6.2.4, respectively.

Our index to be stored at the server(s) is an incidence matrix (I), where each cell (I[i, j] ∈

{0, 1}) represents the relationship between the keyword indexed at row i and the file indexed at

column j. So, each row of I represents the search result of a keyword and each column represents

the content (i.e., keywords) of a file. Since we use Write-Only ORAM for file update, the number

of columns in I are doubled to the maximum number of files that can be stored in the outsourced

database. In other words, given n distinct files and m unique keywords in the database, our index is

of size m× 2n. At the client side, we leverage two position maps Tw, Tf to keep track of location of

keywords and files in I, respectively. They are of structure T := 〈key, value〉, where key is a keyword

or file ID and value← T [key] is the (row/column) index of key in I. Due to Write-Only ORAM, the

client maintains a stash component S to temporarily store columns that might not be written back

during the update due to the overflow.
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(σ, I)← ODSEwoxor.Setup(f):
1: I′[∗, ∗]← 0, initialize counter c← (c1, . . . , c2n) where ci ← 1 for each i ∈ {1, . . . , 2n}
2: Let Π and Π′ be a random permutation on {1, . . . , 2n} and {1, . . . ,m} respectively
3: k3 ← E .Gen(1λ)
4: Extract keywords (w1, . . . , wm) from files f = {fid1 , . . . , fidn}
5: for i = 1, . . . ,m do
6: Tw[wi]← Π′(i)
7: for j = 1, . . . , n do
8: Tf [idj ]← Π(j)
9: if wi appears in fidj then
10: I′[xi, yj ]← 1, where xi ← Tw[wi], yj ← Tf [idj ]

11: for i = 1, . . . ,m do
12: τi ← KDF(k3||i) # Compute key for each row
13: for j = 1, . . . , 2n do
14: I[i, j]← E .Encτi(I

′[i, j], j||cj) # Ciphertext I[i, j] is one-bit long
15: Let I contain ` copies of I and σ ← (k3, Tw, Tf , c)
16: return (σ, I)

Figure 4.51: ODSEwo
xor setup algorithm.

We introduce ODSEwo
xor, an ODSE scheme that offers a low search delay by using XOR trick.

We present the setup algorithm in ODSE as well as its oblivious search and update protocols as

follows.

Figure 4.51 presents setup algorithm to construct the encrypted index in ODSE. Specifically,

it first initializes an unencrypted incidence matrix (I′) of size m × 2n (line 1), and generates a

master key to be used for generating row keys to encrypt each row of I′ (line 3). It extracts unique

keywords from input files (line 4), assigns each keyword and file into a row and column of I′ selected

randomly (lines 6, 9), and then sets the value for each cell of I′ corresponding to the relationship

between keywords and files (line 10). Finally, the algorithm generates a distinct key for each row of

I′ by the master key (line 14), and encrypts each cell of I′ by a distinct pair of row key and column

counter resulting in an encrypted index I (line 14). We encrypt the index bit-by-bit and the resulting

ciphertext of each input bit is also one bit long. This can be implemented by, for example, AES

with CTR mode, where we generate a 128-bit pseudorandom stream key by the master row key (τi)

and the column counter (j||cj), but only XOR the plaintext bit with the most significant bit of the
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(R;⊥)← ODSEwoxor.Search(w, σ; I):
Client:
1: i← Tw[w]
2: (ρ1, . . . , ρ`)← PIRxor.CreateQuery(i)
3: Send ρl to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving ρl do
4: Îl ← PIRxor.Retrieve(ρl, Il)
5: Send Îl to the client
Client: On receive (Î1, . . . , Î`) from ` servers
6: I[i, ∗]← PIRxor.Reconstruct(Î1, . . . , Î`)
7: τi ← KDF(k3||i)
8: for j = 1, . . . , 2n do
9: I′[i, j]← E .Decτi(I[i, j], j||cj)
10: Let J := {j : (I′[i, j] = 1) and ((j is not dummy) or (I′[i, j] ∈ S))}
11: return (R;⊥), where R contains file IDs at column indexes in J

Figure 4.52: ODSEwo
xor search protocol.

stream key. To this end, the client sends a replica of I to ` servers and keeps some information (i.e.,

k3, Tw, Tf , c) private.

ODSEwo
xor harnesses XOR-based PIR on the row dimension of I to conduct the oblivious

keyword search as shown in Figure 4.52. The client first looks up the keyword position map to get

the row index of the searched keyword (line 1). The client then creates XOR-PIR queries (line 2)

and sends them to corresponding servers, each answering the client with the output of the PIR

retrieval algorithm (line 4). Notice that the data is IND-CPA encrypted rather than being public as

in the standard PIR model. Therefore, after recovering the row from the PIR retrieval (line 6), the

client generates the row key (line 7) and then decrypts the row to obtain the search result (line 9).

Recall that the content (i.e., keywords) of a file is represented by a column in I. Given a

file fid to be updated, ODSEwo
xor applies Write-Only ORAM mechanism on the column dimension

of I to update keyword-file pairs in fid as shown in Figure 4.53. The client creates a new column

representing the relationship between the updated file and keywords in the database (lines 2-3), and

stores it in the stash (line 4). The client then randomly selects λ column indexes and requests an

arbitrary server to transmit the corresponding columns of I (lines 5-6). The client generates row

186



www.manaraa.com

(σ′; I′)← ODSEwoxor.Update(fid, σ; I):
Client:
1: Initialize a column Î[i]← 0 for i ∈ {1, . . . , 2n}
2: for each keyword wi ∈ fid do
3: Î[xi]← 1, where xi ← Tw[wi]

4: S← S ∪ {(id, Î)} and Tf [id]← 0 # Put updated column to stash
5: Let J contain λ random-selected column indexes, send J to an arbitrary server Sl
Server Sl: On receive J do
6: Send {Il[∗, j]}j∈J to the client
Client: On receive {Il[∗, j]}j∈J do
7: for i = 1, . . . ,m do
8: τi ← KDF(k3||i)
9: for each index j ∈ J do # Decrypt columns
10: I′[i, j]← E .Decτi(Il[i, j], j||cj)
11: for each dummy index ĵ ∈ J do # Put columns from stash
12: I′[∗, ĵ]← Î and Tf [id]← ĵ, where (id, Î) is picked from S

13: for each index j ∈ J do # Re-encrypt columns
14: cj ← cj + 1
15: for i = 1, . . . ,m do
16: Î[i, j]← E .Encτi(I

′[i, j], j||cj)
17: Send {Î[∗, j]}j∈J to ` servers
Server: each Sl ∈ {S1, . . . , S`} receiving {Î[∗, j]}j∈J do
18: for each j ∈ J do
19: Il[∗, j]← Î[∗, j]
20: return (σ′; I′) where I′ is Il updated at ` servers, and σ′ is updated client state

Figure 4.53: ODSEwo
xor update protocol.

(σ, I)← ODSEworo .Setup(f): Generate encrypted index
1: (σ, I)← ODSEwoxor.Setup(f)
2: return (σ, I)

Figure 4.54: ODSEwo
ro setup algorithm.

keys and decrypts λ columns (lines 7-10). The client overwrites dummy columns among λ columns

with columns stored in the stash (lines 11-12). Finally, the client re-encrypts λ columns and sends

them to ` servers (lines 18-20).

The described ODSEwo
xor scheme requires all ` servers in the system to answer the client.

If one server does not reply due to system/network failure, the correctness of ODSEwo
xor will not

hold anymore. We propose ODSEwo
ro , an ODSE scheme that can achieve the robustness against

unresponsive servers. ODSEwo
ro harnesses the t-out-of-` property of SSS, which allows to maintain
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(R;⊥)← ODSEworo .Search(w, σ; I):
Client:
1: i← Tw[w]
2: (JeK1, . . . , JeK`)← PIRsss.CreateQuery(i)
3: Send JeKl, to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving JeKl do:
4: for j = 1 . . . , 2n′ do
5: for k = 1, . . . ,m do
6: 〈c(l)jk 〉bin ← Il[k, (j − 1) · blog2 pc+ 1 . . . j · blog2 pc] # jth batch of kth row

7: c
(l)
j ← (c

(l)
j1 , . . . , c

(l)
jm)

8: JbjKl ← PIRsss.Retrieve(JeKl, c
(l)
j )

9: Send (Jb1Kl, . . . , Jb2n′Kl) to the client
Client: On receive {Bj = {JbjK1, . . . , JbjK`}}2n

′
j=1 from ` servers

10: for j = 1 . . . , 2n′ do
11: bj ← PIRsss.Reconstruct(Bj , t)
12: I[i, ∗]← 〈b1〉bin||. . . ||〈b2n′〉bin

13: τi ← KDF(k3||i)
14: for j = 1, . . . , 2n do
15: I′[i, j]← Decτi(I[i, j], j||cj)
16: Let J := {j : (I′[i, j] = 1) and ((j is not dummy) or (I′[i, j] ∈ S))}
17: return (R;⊥), where R contains file IDs at column indices in J

Figure 4.55: ODSEwo
ro search protocol.

the correctness given that some servers (i.e., up to `− t− 1) do not answer. We define the setup

algorithm along with the oblivious search and update protocols in ODSEwo
ro scheme as follows.

ODSEwo
ro works over the index encrypted with IND-CPA encryption. Therefore, the setup

algorithm of ODSEwo
ro is identical to that of ODSEwo

xor scheme as shown in Figure 4.54.

ODSEwo
ro harnesses SSS-based PIR protocol on the row dimension of I to conduct keyword

search as shown in Figure 4.55. Specifically, the client first retrieves the row index of the searched

keyword from the keyword position map (line 1). The client then creates SSS-based PIR queries

(line 2) and sends to corresponding servers, each replying with the output of the SSS-based PIR

retrieval algorithm. Notice that the SSS-based PIR retrieval algorithm performs the dot product

between the client query and the database input via scalar multiplication and additive homomorphic

properties of SSS. This requires the database input to be elements in Fp. Since each row in I is a

uniformly random binary string of length 2n due to IND-CPA encryption, the servers split each
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(σ′; I′)← ODSEworo .Update(fid, σ; I): Update a file
1: (σ′; I′)← ODSEwoxor.Update(fid, σ; I)
2: return (σ′; I′)

Figure 4.56: ODSEwo
ro update protocol.

row of I into 2n′ chunks (ck) with the equal size such that |ck|< log2 p (line 6). The dot product is

performed iteratively between the search query and divided chunks from all rows of I (lines 7-8).

After receiving answers from ` servers, the client recovers all chunks of the searched row (lines 10-12)

and finally, decrypts the row to obtain the search result (lines 13-17).

ODSEwo
ro harnesses Write-Only ORAM mechanism on the column dimension of I to perform

file update. Since the index I in ODSEwo
ro is identical to ODSEwo

xor, the update protocol of ODSEwo
ro

is also identical to that of ODSEwo
xor (Figure 4.56).

ODSEwo
ro scheme relies on IND-CPA encryption for the encrypted index so that it only offers

(at most) computational security. We now introduce ODSEwo
it , an ODSE scheme that can achieve the

highest level of security (i.e., information-theoretic) for the index as well as any operations (search

and update) on it. The main idea is to share the index with SSS, and harness SSS-based PIR to

conduct private search. We describe the algorithms of ODSEwo
it as follows.

Figure 4.57 presents the setup algorithm to construct the distributed index in ODSEwo
it .

Specifically, it first constructs an (unencrypted) index (I′) representing keyword-file relationships as

in other ODSE schemes. Instead of encrypting I′ with an IND-CPA encryption scheme, it creates

the shares of I′ with SSS and distributes them to corresponding servers. As discussed above, SSS

operates over elements in Fp. Therefore, it is required to split each row of I′ into blog2 pc-bit chunks

(line 4), and compute SSS share for each chunk (line 5). Therefore, the “encrypted” index in ODSE

contains ` SSS-shares of I′ for ` servers, each being a matrix Il of size m×2n′, where Il[i, j] ∈ Fp and
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(σ, I)← ODSEwo
it .Setup(f):

1: (I′, Tw, Tf )← Execute lines 2–10 in Figure 4.51
2: for i = 1, . . . ,m do
3: for j = 1, . . . , 2n′ do
4: 〈bij〉bin ← I[i, (j − 1) · blog2 pc+ 1 . . . j · blog2 pc] # Pack each row into batches of size blog2 pc
5: (I1[i, j], . . . , I`[i, j])← SSS.Create(〈bij〉bin, t)

6: return (σ, I) , where I ← {I1, . . . , I`} and σ ← (Tw, Tf )

Figure 4.57: ODSEwo
it setup algorithm.

(R;⊥)← ODSEwo
it .Search(w, σ; I):

Client:
1: i← Tw[w]
2: (JeK1, . . . , JeK`)← PIRsss.CreateQuery(i)
3: Send JeKl, to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving JeKl do
4: for j = 1 . . . , 2n′ do
5: JbjKl ← PIRsss.Retrieve(JeKl, Il[∗, j])
6: Send (Jb1Kl, . . . , Jb2N′Kl) to the client
Client: On receive {Bj = {JbjK1, . . . , JbjK`}}2n

′
j=1 from ` servers

7: for j = 1 . . . , 2n′ do
8: bj ← PIRsss.Reconstruct(Bj , 2t)
9: I′[i, ∗]← 〈b1〉bin||. . . ||〈b2n′〉bin

10: Let J := {j : (I′[i, j] = 1) and ((j is not dummy) or (I′[i, j] ∈ S))}
11: return (R;⊥), where R contains file IDs at column indices in J

Figure 4.58: ODSEwo
it search protocol.

n′ = n/blog2 pc. To this end, the client sends Il to server Sl and keep position maps (i.e., Tw, Tf )

private.

Similar to ODSEwo
ro , ODSEwo

it harnesses the SSS-based PIR protocol on the row dimension

of I to conduct the keyword search as presented in Figure 4.58. Generally speaking, the client

gets the row index to be searched from the keyword position map, creates SSS-based PIR queries

and send them to the corresponding servers, each replying with the outputs of the SSS-based PIR

retrieval algorithm (lines 1-6). Notice that since the index stored on Sl is a share matrix, each dot

product computation in the SSS-based PIR retrieval algorithm will result in a share represented by

a 2t-degree polynomial. Therefore, the client needs to call the SSS-based recover algorithm with the

privacy parameter of 2t (vs. t as in ODSEwo
ro ) to obtain the correct search result (line 8).
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(σ′; I′)← ODSEwo
it .Update(fid, σ; I):

Client:
1: Initialize a column Î[i]← 0 for i = 1, . . . , 2n
2: for each keyword wi ∈ fid do
3: Î[xi]← 1, where xi ← Tw[wi]

4: S← S ∪ {(id, Î)} and Tf [id]← 0
5: Let J contain λ random-selected column indexes, send J to (t+ 1) arbitrary servers Sl1 , . . . , Slt+1

Server: each Sl ∈ {Sl1 , . . . , Slt+1} receiving J do
6: Send {Il[∗, j]}j∈J to the client
Client: On receive {Bij = {Il1 [i, j], . . . , Ilt+1 [i, j]}}j∈J ,i∈[m] do
7: for i = 1, . . . ,m do
8: for each index j ∈ J do
9: bij ← SSS.Recover(Bij , t)
10: I′[i, j · blog2 pc+ 1, ...(j + 1) · blog2 pc]← 〈bij〉bin

11: for each dummy column I′[∗, ĵ] do
12: I′[∗, ĵ]← Î and Tf [id]← ĵ, where (id, Î) is picked from S

13: for each index j ∈ J do
14: for i = 1 . . . ,m do
15: 〈b′ij〉bin ← I′[i, j · blog2 pc+ 1, . . . , (j + 1) · blog2 pc]
16: (Î1[i, j], . . . , Î`[i, j])← SSS.Create(b′ij , t)

17: Send {Îl[∗, j]}j∈J to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving {Îl[∗, j]}j∈J do
18: for each j ∈ J do
19: Il[∗, j]← Îl[∗, j]
20: return (σ′; I′) where I′ is Il updated at each server Sl and σ′ is updated client state

Figure 4.59: ODSEwo
it update protocol.

Similar to other ODSE schemes, ODSEwo
it harnesses Write-Only ORAM mechanism on the

column dimension of the index for the oblivious file update as outlined in Figure 4.59. Specifically,

the client creates a column representing the relationship between the updated file and keywords in

the database, and temporarily stores it in the stash (lines 1-4). In ODSEwo
it , each column of the

share index Il on Sl actually contains the share of blog2 pc columns of the unencrypted index I′.

Therefore, it suffices to read λ′ = d λ
blog2 pc

e random columns of Il from t + 1 arbitrary servers to

reconstruct λ columns of I′ (lines 5-10). The update is similar to other ODSE schemes, in which the

client aggressively over-writes dummy columns of I′ with columns stored in the stash (lines 11- 12).

Finally, the client creates new SSS shares for the retrieved columns (lines 13-16) and writes them

back to ` servers (lines 18-20).
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4.6.2.3 Security Analysis

Remark 5. One might observe that search and update operations in ODSE schemes are performed

on the row dimension and the column dimension of the encrypted index, respectively. This access

structure might enable the adversary to learn whether the operation is search or update, even though

each operation is secure. Therefore, to achieve security as in Definition 16, where the query type

should also be hidden, we can trigger both search and update protocols (one of them is the dummy

operation) regardless of whether the intended action is search or update.

We argue the security of our proposed schemes as follows.

Theorem 7. ODSEwo
xor scheme is computationally (`− 1)-secure by Definition 16.

Proof. (Sketch) (i) Oblivious Search: ODSEwo
xor leverages XOR-based PIR and therefore, achieves

(` − 1)-privacy for keyword search as proven in [45]. (ii) Oblivious Update: ODSEwo
xor employs

Write-Only ORAM which achieves negligible write failure probability and therefore, it offers the

statistical security without counting the encryption. The index in ODSEwo
xor is IND-CPA encrypted,

which offers computational security. Therefore in general, the update access pattern of ODSEwo
xor

scheme is computationally indistinguishable. ODSEwo
xor performs Write-Only ORAM with an identical

procedure on ` servers (e.g., the indexes of accessed columns are the same in ` servers), and therefore,

the server coalition does not affect the update privacy of ODSEwo
xor. (iii) ODSE Security: By

Remark 5, ODSEwo
xor performs both search and update regardless of the actual operation. As

analyzed, search is (`−1)-private and update pattern is computationally secure. Therefore, ODSEwo
xor

achieves computational (`− 1)-security by Definition 16.

Theorem 8. ODSEwo
ro scheme is computationally t-secure by Definition 16.
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Proof. (Sketch) (i) Oblivious Search: ODSEwo
ro leverages a SSS-based PIR protocol and therefore,

achieves t-privacy for keyword search due to the t-privacy property of SSS as proven in [17, 73].

(ii) Oblivious Update: Similar to ODSEwo
xor, ODSEwo

ro leverages Write-Only ORAM over IND-CPA

encrypted database, which offers computational security as shown in [23]. (iii) ODSE Security: By

Remark 5, for each actual operation, the client triggers both search and update protocols. Given that

search is t-private and update pattern is computationally oblivious, the access pattern in ODSEwo
ro is

a computationally indistinguishable in the presence of t colluding servers.

Theorem 9. ODSEwo
it scheme is information-theoretically (statistically) t-secure by Definition 16.

Proof. (Sketch) (i) Oblivious Search: ODSEwo
it leverages an SSS-based PIR protocol and therefore,

achieves t-privacy for keyword search due to the t-privacy property of SSS [73]. (ii) Oblivious Update:

The index in ODSEwo
it is SSS-shared, which is information-theoretically secure in the presence of

t colluding servers. ODSEwo
it also employs Write-Only ORAM, which offers statistical security

due to negligible write failure probability. Therefore in general, the update access pattern of

ODSEwo
it scheme is information-theoretically (statistically) indistinguishable in the coalition of up to

t servers. (iii) ODSE Security: By Remark 5, ODSEwo
it performs both search and update protocols

regardless of the actual operation. As analyzed above, search is t-private and update pattern

is statistically t-indistinguishable. Therefore, ODSEwo
it is information-theoretically (statistically)

t-secure by Definition 16.

4.6.2.4 ODSE with Malicious Security

In previous sections, we have shown that ODSE schemes offer a certain level of collusion-

resiliency and robustness in the semi-honest setting where the servers follow the protocol faithfully.
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In some privacy-critical applications, it is necessary to achieve data integrity and robustness in the

malicious environment, where the adversary can tamper with the query and data to compromise

the correctness and privacy of the protocol. In this section, we show that our proposed semi-honest

ODSE schemes can be extended to be secure and robust against malicious adversaries.

To achieve integrity of the index and the server-computation, our main idea is to harness

computational and information-theoretic message authentication code (MAC) techniques. We first

provide the definition of computational and information-theoretic MAC as follows.

Let Σ = (Gen,Mac,Vrfy) be a secure keyed MAC scheme [110]: θ ← Σ.Gen(1λ) generating

a MAC key with security parameter λ; µ← Σ.Macθ(m) generating a tag for message m ∈ {0, 1}∗

with key θ; {0, 1} ← Σ.Vrfyθ(m,µ) verifying if the tag (µ) associated with the message (m) is either

valid (1) or invalid (0).

Let θ ← Fp be a global MAC key, which is known only by the client. The MAC tag (µ) for

each data block (b) is computed as µ = θ · b (over Fp). Given that the client maintains a consistent

relationship between µ, b and θ while keeping them hidden from the adversary, the adversary cannot

change b without changing µ and/or α. Therefore, µ is secret-shared among servers along with the

shares of b. The verification can be done by reconstructing the block (b) as well as its tag (µ) from

the shares, and comparing if µ = θ · b holds at the end.

In ODSEwo
xor and ODSEwo

ro schemes, we leverage the computational MAC scheme to achieve

the integrity of the index encrypted by IND-CPA encryption . On the other hand, the ODSEwo
it

offers information-theoretic security since its index is secret-shared, instead of IND-CPA encrypted.

Therefore, we apply information-theoretic MAC to this scheme to preserve its security level. We

now present the extensions of ODSE schemes into the malicious setting in details as follows.
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(σ, I)← MD-ODSEwoxor.Setup(f):
1: (I, Tf , Tw, c, κ)← Execute lines 1-14 in Figure 4.51
2: θ ← Σ.Gen(1λ)
3: for i = 1, . . . ,m do
4: for j = 1, . . . , 2n/|µ| do # |µ|:(pre-defined) length of the MAC tag.
5: T[i, j]← Σ.Macθ(I[i, (j − 1) · |µ|+1 . . . j · |µ|])
6: Let I contain ` copies of (I, T) and σ ← (θ, k3, Tw, Tf , c)
7: return (σ, I)

Figure 4.60: MD-ODSEwo
xor setup algorithm.

(R;⊥)← MD-ODSEwoxor.Search(w, σ; I):
Client:
1: (ρ1, . . . , ρ`)← Execute lines 1-2 in Figure 4.52 (to learn that the keyword w corresponds to
ith row and request retrieval of ith row privately)

2: Send ρl to Sl for l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving ρl do
3: Îl ← Execute line 4 in Figure 4.52
4: T̂l ← PIRxor.Retrieve(ρl,Tl)
5: Send (Îl, T̂l) to the client
Client: On receive (〈Î1, . . . , Î`〉, 〈T̂1, . . . , T̂`〉) from ` servers
6: I[i, ∗]← Execute line 6 in Figure 4.52
7: T[i, ∗]← PIRxor.Reconstruct(T̂1, . . . , T̂`)
8: for j = 1 . . . 2n/|µ| do
9: if Σ.Vrfyθ(I[i, (j − 1) · |µ|+1 . . . j · |µ|],T[i, j]) = 0 then
10: return abort
11: J ← Execute lines 7-10 in Figure 4.52
12: return (R;⊥), where R contains file IDs at column indexes in J

Figure 4.61: MD-ODSEwo
xor search protocol.

We present MD-ODSEwo
xor, the extended version of ODSEwo

xor, which offers security against

malicious adversary using the computational MAC. The verification allows the client to abort the

protocol if he/she detects any malicious behaviors attempting to tamper with the encrypted index

and/or the search/update query. Our MD-ODSEwo
xor protocols are defined as follows.

Figure 4.60 presents the setup of MD-ODSEwo
xor scheme with the MAC tag generation for the

encrypted index. Generally speaking, it first generates the encrypted index I similar to semi-honest

ODSEwo
xor (line 1), and then generates a MAC key (line 2), followed by computing a matrix T

containing the MAC tag for each |µ|-bit blocks of each row of I (lines 3-5). In this context, each

server in the system stores two matrices including the encrypted index I and the MAC matrix T.
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(σ′; I′)← MD-ODSEwoxor.Update(fid, σ; I):
Client:
1: (S, Tf )← Execute lines 2-4 in Figure 4.53
2: J ′ ← Select λ random indexes of |µ|-bit columns in I
3: Send J ′ to an arbitrary server Sl
Server Sl: On receive J ′ do
4: Send {Il[∗, (j′ − 1) · |µ|+1 . . . j′ · |µ|], Tl[∗, j′] }j′∈J ′ to the client
Client: On receive {Il[∗, (j′ − 1) · |µ|+1 . . . j′ · |µ|],Tl[∗, j′]}j′∈J ′ do
5: for each j′ ∈ J ′ do
6: for i = 1, . . . ,m do
7: if Σ.Vrfyθ(I[i, (j

′ − 1) · |µ|+1 . . . j′ · |µ|],Tl[i, j]) = 0 then
8: return abort
9: (Î,S, Tf , c)← Execute lines 7-16 in Figure 4.53 with J = {j′, . . . , j′ · |µ|−1}j′∈J ′
10: T̂[i, j′]← Σ.Macθ(Î[i, (j

′ − 1) · |µ|+1 . . . j′ · |µ|]) for each j′ ∈ J ′ and i = 1, . . . ,m
11: Send {Î[∗, (j′ − 1) · |µ|+1 . . . j′ · |µ|], T̂[∗, j′] }j′∈J ′ to ` servers
Server: each Sl ∈ {S1, . . . , S`} receiving {Î[∗, (j′ − 1) · |µ|+1 . . . j′ · |µ|], T̂[∗, j′]}j′∈J ′ do
12: Il ← Execute lines 18-19 in Figure 4.53
13: Tl[∗, j′]← T̂[∗, j′] for each j′ ∈ J ′
14: return (σ′; I′) where I′ are (I, T) updated at ` servers, and σ′ is the updated client state

Figure 4.62: MD-ODSEwo
xor update protocol.

Figure 4.61 presents the search protocol of MD-ODSEwo
xor, which is extended from the search

protocol of semi-honest ODSEwo
xor to be secure against malicious adversary. Specifically, the client

generates XOR-PIR queries for ` servers similar to the semi-honest ODSEwo
xor scheme (line 1). Each

server performs the XOR-PIR retrieval on both the encrypted index (line 3) and the MAC components

(line 4) using the same query received, and sends the result to the client. The client recovers the row

of the encrypted index (line 6) as well as its corresponding tag (line 7). The client verifies each |µ|-bit

block with its corresponding tag (lines 8-10). If all the tags are valid, the client continues to decrypt

the row to obtain the search result as in the semi-honest ODSEwo
xor scheme (line 11). Otherwise, the

client aborts and notifies that at least one of the servers is malicious (line 10).

Figure 4.62 presents the update protocol of MD-ODSEwo
xor extended from the semi-honest

ODSEwo
xor for malicious security. Instead of downloading λ random 1-bit columns as in the semi-honest

ODSEwo
xor, the client downloads λ random columns of |t|-bits as well as their corresponding MAC

tag. Before decryption, the client verifies the integrity of the retrieved data by the MAC (lines 5-8).
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(σ, I)← ODSEwoxor.Setup(f):
1: (σ, I)← MD-ODSEwoxor.Setup(f)
2: return (σ, I)

Figure 4.63: MR-ODSEwo
ro setup algorithm.

(R;⊥)← MR-ODSEworo .Search(w, σ; I):
Client:
1: (i, 〈JeK1, . . . , JeK`〉)← Execute lines 1-2 in Figure 4.55
2: Send JeKl to Sl for each l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving JeKl do:
3: (Jb1Kl, . . . , Jb2n′Kl)← Execute lines 4-8 in Figure 4.55
4: JµjKl ← PIRsss.Retrieve(JeKl,Tl[∗, j]) for j = 1 . . . , 2n/|µ|
5: Send ({JµjKl}2n/|µ|j=1 , {JbjKl}2n

′
j=1) to the client

Client: On receive { (Jµ1Kl, . . . , Jµ2n/|µ|Kl), (Jb1Kl, . . . , Jb2n′Kl)}`l=1 from ` servers
6: X ← Select t+ 1 servers among ` servers
7: Bj ← {JbjKx}x∈X ,j∈[2n′], Tj ← {JµjKx}x∈X ,j∈[ 2n

|µ| ]
8: I[i, ∗]← Execute lines 10-12 in Figure 4.55
9: for j = 1 . . . , 2n/|µ| do
10: T[i, j]← PIRsss.Reconstruct(Tj , t)
11: if Σ.Vrfyθ(I[i, (j − 1) · |µ|+1 . . . j · |µ|],T[i, j]) = 0 then
12: if all distinct subset X have been processed then
13: return abort
14: X ← Select another set of t+ 1 servers and goto line 7
15: J ← Execute lines 13 -17 in Figure 4.55
16: return (R;⊥), where R contains file IDs at column indexes in J

Figure 4.64: MR-ODSEwo
ro search protocol.

If there exists one invalid tag, the client aborts and notifies that at least one server is malicious (line

8). Otherwise, the client performs the update following the same line with the semi-honest ODSEwo
xor

(line 9). Finally, the client creates new MAC tags for re-encrypted columns and send all of them to `

servers to be updated (lines 10-14).

Since ODSEwo
ro relies on SSS for oblivious search, we can extend it in various ways to not

only detect but also be robust against malicious adversary. One straightforward extension is to

consider SSS as a particular instance of Reed Solomon Code, and then implement Reed Solomon

Decoding techniques [81, 185] to handle incorrect server replies. However, this approach can only

handle a small number of the malicious servers in the system (e.g., t < `/3 if using [185]), which

might increase the deployment cost. Another approach is to harness the t-out-of-` threshold property
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(σ′; I′)← MR-ODSEworo .Update(fid, σ; I):
1: (σ′; I′)← MD-ODSEwoxor.Update(fid, σ; I)
2: return (σ′; I′)

Figure 4.65: MR-ODSEwo
ro update protocol.

(σ, I)← MR-ODSEwo
it .Setup(f):

1: (〈I1, . . . , I`〉, Tw, Tf , 〈b11, . . . , bm2n′〉)← Execute lines 1-5 in Figure 4.58
2: α $← Fp
3: (T1[i, j], . . . ,T`[i, j])← SSS.Create(α · bij , t) for i = 1, . . . ,m and for j = 1, . . . , 2n′

4: return (σ, I) , where I ← {〈I1, . . . , I`〉, 〈T1, . . . ,T`〉} and σ ← (α, Tw, Tf )

Figure 4.66: MR-ODSEwo
it setup algorithm.

of SSS along with the MAC technique presented in the previous section. The main idea is to select

(t+ 1) answers among ` answers from the servers to recover the encrypted search result and its MAC

tags. If there exists one invalid MAC, we repeat the recover process by selecting a different set of

(t+ 1) answers until we find that all the tags are valid. This strategy offers the detection capability

and robustness against malicious behaviors given that the majority of the servers is honest (i.e.,

t < `/2). Therefore, we opt-to this approach to design MR-ODSEwo
ro , the maliciously-robust version

of ODSEwo
ro as follows.

The index structure of MR-ODSEwo
ro is identical to that of MD-ODSEwo

xor. Thus, its setup

algorithm is identical to that of MD-ODSEwo
xor, where the MAC tag is created for each |t|-bit blocks

in each row of the encrypted index (Figure 4.63).

Figure 4.64 outlines the search protocol of MR-ODSEwo
ro extended from that of ODSEwo

ro for

malicious security. For each time of oblivious keyword search, the client creates SSS-based PIR

query as in the semi-honest ODSEwo
ro (line 1), and the servers perform the SSS-based PIR retrieval

on both the encrypted index (line 3) and MAC components (line 4). Once receiving answers from

` servers, the client picks t + 1 out of ` replies (lines 6-7), and performs the SSS recover via the

Lagrange interpolation to obtain the encrypted search row (line 8) as well its MAC tag (lines 9-14) .
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(R;⊥)← MR-ODSEwo
it .Search(w, σ; I):

Client:
1: (i, 〈JeK1, . . . , JeK`〉)← Execute lines 1-2 in Figure 4.58
2: Send JeKl, to Sl for each l ∈ {1, . . . , `}
Server: each Sl ∈ {S1, . . . , S`} receiving JeKl do
3: (Jb1Ki, . . . , Jb2N′Ki) ← Execute lines 4 -5 in Figure 4.58
4: JµjKl ← PIRsss.Retrieve(JeKl,Tl[∗, j]) for each j ∈ {1 . . . , 2n′}
5: Send (〈Jµ1Kl, . . . , Jµ2n′Kl〉, 〈Jb1Kl, . . . , Jb2n′Kl〉) to the client
Client: On receive {〈JµkK1, . . . , JµkK`〉, 〈JbkK1, . . . , JbkK`〉}2n

′
k=1 from ` servers

6: X ← Select 2t+ 1 servers among ` servers
7: Bj ← {JbjKx}x∈X ,j∈[2n′], Tj ← {JµjKx}x∈X ,j∈[2n′]

8: (b1, . . . , b2n′)← Execute lines 7-8 in Figure 4.58
9: for j = 1 . . . , 2n′ do
10: µj ← PIRsss.Reconstruct(Tj , 2t)
11: if (α · βj 6= µj) then
12: if (all distinct subset X have been processed) then
13: return abort
14: X ← Select another set of 2t+ 1 servers and goto line 7
15: J ← Execute lines 9-10 in Figure 4.58
16: return (R;⊥), where R contains file IDs at column indexes in J

Figure 4.67: MR-ODSEwo
it search protocol.

The client verifies the integrity of the encrypted row and decrypts it if all MAC tags are valid. If

there exists one invalid tag, the client selects another set of t+ 1 replies, and repeats the verification

process. If the client tries all possible sets, which incurs (in total)
(
`
t+1

)
verification tests, but none

produces all valid tags, the client aborts the protocol and notifies that a majority of servers (t > `/2)

is corrupted (line 13).

The update protocol in MR-ODSEwo
ro is similar to that of MD-ODSEwo

xor (Figure 4.65). To

improve the robustness against malicious adversary, the client can request ` servers to transfer λ

|t|-bit columns, and selects one of ` replies to verify the integrity and performs the update.

We present MR-ODSEwo
it , the extended version of ODSEwo

it that inherits all properties of

ODSEwo
it (e.g., information-theoretic security) along with the robustness against malicious adversary.

To preserve the information-theoretic security, we use the information-theoretic MAC as defined

above for each block. The details are as follows.
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(σ′; I′)← ODSEwo
it .Update(fid, σ; I):

Client:
1: (J ,S, Tf )← Execute lines 1-5 in Figure 4.59
2: Send J to ` servers (S1, . . . , S`)
Server: each Sl ∈ {S1, . . . , S`} receiving J do
3: Send {Il[∗, j],Tl[∗, j] }j∈J to the client
Client: On receive {〈I1[∗, j], . . . , I`[∗, j]〉, 〈T1[∗, j], . . . ,T`[∗, j]〉 }j∈J do
4: X ← Select t+ 1 servers among ` servers
5: Bij ← {I[i, j]x}x∈X ,j∈J ,i∈[m]

6: {I′[∗, j], 〈b1j , . . . , bmj〉}j∈J ← Execute lines 7-10 in Figure 4.59
7: for i = 1 . . .m do
8: for each j ∈ J do
9: if (α · I′[i, j] 6= T[i, j]) then
10: if (all distinct subset X have been processed) then
11: return abort
12: X ← Select another set of t+ 1 servers and goto line 5
13: {〈Î1[∗, j], . . . Î`[∗, j]〉, 〈b′1j , . . . , b′mj〉}j∈J ← Execute lines 11-16 in Figure 4.59
14: (T̂1[i, j], . . . , T̂`[i, j])← SSS.Create(α · b′ij , t) for each j ∈ J and for i = 1 . . .m

15: Send {Îl[∗, j], T̂l[∗, j] }j∈J to Sl for l = 1, . . . , `
Server: each Sl ∈ {S1, . . . , S`} receiving {Îl[∗, j], Tl[∗, j] }j∈J do
16: {Il[∗, j]}j∈J ← Execute lines 18-19 in Figure 4.59
17: Tl[∗, j]← T̂l[∗, j] for each j ∈ J
18: return (σ′; I′) where I′ are (Il, Tl) updated at ` servers and σ′ is updated client state

Figure 4.68: MR-ODSEwo
it update protocol.

MR-ODSEwo
it follows the principles in the semi-honest ODSEwo

it scheme to create the share

index (Figure 4.66, line 1). It then creates a global MAC key by selecting a random element in Fp

(line 2). It multiplies the representative element in Fp of each index block with the global MAC key

over Fp yielding the MAC tag, and then creates the SSS shares for each tag (line 3). The SSS shares

of MAC tags are distributed along with the share index across ` servers.

Figure 4.67 presents the search protocol of MR-ODSEwo
it extended from that of ODSEwo

it

for malicious security. The extension follows the line of the MR-ODSEwo
ro scheme. Specifically, the

servers perform SSS-based PIR retrieval on both index and the MAC components (lines 3-4). The

client picks 2t + 1 out of ` replies to recover and verify the integrity of the search result (lines

6-7). If after
(

`
2t+1

)
trials with different subsets but none producing the valid tags, the client aborts

the protocol and notifies that more than `/3 servers are malicious (line 7). Otherwise, the client
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continues to process the recovered data as in the semi-honest MR-ODSEwo
it scheme to obtain the

final search result (line 15).

Figure 4.68 presents the update protocol of MR-ODSEwo
it . Basically, the client downloads λ

columns of the share index and their corresponding MAC from ` servers. The client selects t+ 1

replies to recover and verify the integrity of downloaded data before performing update. If all tags

are valid, the client performs the write-only ORAM procedure as in ODSEwo
it scheme, re-calculates

the MAC tag for each block, and then creates new SSS shares for each tag. Otherwise, the client

aborts the protocol and notifies that a majority of servers is malicious.

4.6.2.5 Experimental Evaluation

We fully implemented all ODSE schemes in C++. We used Google Sparsehash library [4] to

implement position maps Tf and Tw. We utilized Intel AES-NI library [80] to implement AES-CTR

encryption/decryption in ODSEwo
xor and ODSEwo

ro schemes. We leveraged Shoup NTL library [162]

for pseudo-random number generator and arithmetic operations over finite field. We used ZeroMQ

library [3] for client-server communication. We used multi-threading technique to accelerate PIR

computation at the server. The code is available at https://github.com/thanghoang/ODSE.

We used Amazon EC2 with r4.4xlarge instance for server(s), each equipped with 16 vCPUs

Intel Xeon @ 2.3 GHz and 122 GB RAM. We used a laptop with Intel Core i5 @ 2.90 GHz and 16

GB RAM as the client. All machines ran Ubuntu 16.04. The client established a network connection

with the server via WiFi connection. We used a real network setting, in which the download/upload

throughput is 27/5 Mbps, respectively.

We used the subsets of the Enron dataset to build I containing from millions to billions of

keyword-file pairs. The largest dataset contain around 300,000 files with 320,000 unique keywords.
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Our tokenization is identical to [136] so that our keyword distribution and query pattern are similar

to [136].

We compared ODSE with a standard DSSE scheme [35], and the use of generic ORAM atop

the DSSE encrypted index. The performance of all schemes was measured under the same setting

and configuration We configured ODSE schemes and their counterparts as follows.

• ODSE: For the semi-honest setting, we deployed two servers for ODSEwo
xor and ODSEwo

ro schemes,

and three servers for ODSEwo
it scheme. We selected λ = 4 for ODSEwo

xor and ODSEwo
ro , and λ′ = 4

with Fp where p is a 16-bit prime for ODSEwo
ro schemes ODSEwo

it . We note that selecting larger p

(e.g., |p|= 64 bits) can reduce the PIR computation time with the cost of the bandwidth overhead

due to the increase of query size. We chose a 16-bit prime field to achieve a balanced computation

and communication overhead. For the malicious setting, we first fixed the number of servers for

ODSEwo
xor and ODSEwo

ro schemes to be two, three and four, respectively to handle one adversary.

We then increased the number of servers to allow more malicious servers.

• Standard DSSE: We selected one of the most efficient DSSE schemes by Cash et al. in [35]

(i.e., Πdyn
2lev variant) to demonstrate the performance gap between ODSE and the standard DSSE.

We estimated the performance of Πdyn
2lev using the same software/hardware environments and

optimizations as ODSE (e.g., parallelization, AES-NI acceleration). Note that we did not use

the Java implementation of this scheme available in Clusion library [1] for comparison due to

its lack of hardware acceleration support (i.e., no AES-NI) and the difference between running

environments (Java VM vs. C). Our estimation is conservative in which, we used numbers that

would be better than the Clusion library.
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Figure 4.69: Latency of semi-honest ODSE schemes and their counterparts.

• Using generic ORAM atop DSSE encrypted index: We selected non-recursive Path-ORAM [169]

and Ring-ORAM [150], as ODSE counterparts since they are the most efficient generic ORAM

schemes for data outsourcing to date. Since we focus on encrypted index rather than encrypted

files in DSSE, we did not explicitly compare our schemes with TWORAM [67] but instead used

one of their techniques to optimize the performance of using generic ORAM on DSSE encrypted

index. Specifically, we applied the selected ORAMs on the dictionary index as in [136] along

with the round-trip optimization as in [67]. Note that these estimates are also conservative,

where memory access delays were excluded, and cryptographic operations were optimized and

parallelized for an objective comparison.

Figure 4.69 presents the end-to-end delays of ODSE schemes and their counterparts, where we

performed both search and update protocols in ODSE schemes to hide the actual type of operation

(see Remark 5). ODSE offers a higher security than standard DSSE at the cost of a longer delay.

Nevertheless, ODSE schemes are 3×-57× faster than the use of generic ORAMs atop DSSE encrypted

index to hide the access patterns. Specifically, with an encrypted index consisting of ten billions
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of keyword-file pairs, Πdyn
2lev cost 36 milliseconds and 600 milliseconds to finish a search and update

operation, respectively. ODSEwo
xor and ODSEwo

it , respectively, took 2.8 seconds and 8.6 seconds to

accomplish both keyword search and file update operations, compared with 160 seconds by using

Path-ORAM with the round-trip optimization [67].

We present the separate delay for the search and update operations in ODSE schemes in

Table 4.8. ODSEwo
xor is the most efficient in terms of search, whose delay was less than 1 second.

This is due to the fact that ODSEwo
xor only triggers XOR operations and the size of the search query

is minimal (i.e., a binary string). ODSEwo
ro and ODSEwo

it are more robust (e.g., malicious tolerant)

and one of which is more secure (e.g., information-theoretic security) than ODSEwo
xor at the cost of

higher search delay (i.e., 4 seconds) due to its larger search query and SSS arithmetic computations.

ODSEwo
it is the slowest among the three ODSE schemes since it requires three servers and, therefore,

the client needs to transmit more data.

For the oblivious file update, ODSEwo
xor and ODSEwo

ro achieved a similar delay since they have

the same number of servers and incurred the same amount of data to be transmitted. ODSEwo
it

is slightly slower than ODSEwo
xor and ODSEwo

ro because the client transmitted data to three servers,

instead of two. We can see that in many cases, where it is not necessary to hide the operation

types (search/update), using ODSE to conduct individual oblivious operations, especially the

keyword search, is much more efficient than generic ORAMs. We further provide a comparison

of ODSE schemes with their counterparts in Table 4.8. In the following section, we dissect the

end-to-end delay of ODSE schemes to understand which factors contributing the most to their

performance.
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Table 4.8: Comparison of ODSE and its counterparts.

Scheme
Security Delay (second) Distributed Setting†

Forward
privacy

Backward
privacy

Hidden access
pattern‡

Encrypted
index∗ Search Update Privacy

level
Improved
Robustness

Standard DSSE [35] 7 7 7 Computational 0.036 0.62 - -
Path-ORAM[169] 3 3 Computational Computational 160.6 - -
Ring-ORAM [150] 3 3 Computational Computational 137.4 - -
ODSEwo

xor 3 3 Computational Computational 0.48 2.32 `− 1 7

ODSEwo
ro 3 3 Computational Computational 3.45 1.85 < ` 3

ODSEwo
it 3 3

Information
theoretic

Information
theoretic 4.54 4.08 < `/2 3

This delay is for semi-honest setting with encrypted index containing 300,000 files and 320,000 keywords under the network and configuration
presented in §4.6.2.5.
∗The encrypted index in ODSEwo

it is information-theoretically secure because it is SSS. Other schemes employ IND-CPA encryption so that their
index is computationally secure (see §4.6.2.3).
‡All ODSE schemes perform search and update protocols to hide the actual query type. In ODSEwo

xor, search is IT-secure due to SSS-based PIR and
update is computationally secure due to IND-CPA encryption. Hence, its overall security is computational.
† ` is # servers in the system. We define the robustness in distributed setting as the ability to tolerate unresponsive server(s) in the semi-honest
setting or incorrect replies in the malicious setting. In ODSEwo

it , encrypted index and search query are SSS with the same privacy level. Generic
ORAM solutions have a stronger adversarial model than ours because they are not vulnerable to collusion that arises in the distributed setting.

Figure 4.70 presents the detailed delays of separate keyword search and file update operations

in ODSE schemes. There are three main factors impacting the end-to-end delay of ODSE schemes as

follows.

As shown in Figure 4.70, the client computation contributes the least amount to the overall

search delay (less than 10%) in all ODSE schemes. It comprises the following operations: (i) Generate

search queries with PRF in ODSEwo
xor or SSS in ODSEwo

ro and ODSEwo
it schemes; (ii) SSS recovery (in

ODSEwo
ro and ODSEwo

it ) and/or IND-CPA decryption (in ODSEwo
xor and ODSEwo

ro ); (iii) Filter dummy

columns and collect columns in the stash. Note that the client delay of ODSE schemes can be further

reduced (by at least 50%-60%) via pre-computation of some values such as row keys and PIR queries

(only contain shares of 0 or 1). For the file update, the client performs either decryption followed by

re-encryption on λ columns (in ODSEwo
xor and ODSEwo

ro ), or SSS over λ′ blocks (in ODSEwo
it ). Since

we used crypto acceleration (i.e., Intel AES-NI) and highly optimized number theory libraries (i.e.,

NTL), all these computations only contributed to a small fraction of the total delay.
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Figure 4.70: Detailed search (S) and update (U) costs of semi-honest ODSE schemes.

Data transmission is the most dominating factor in the delay of ODSE schemes. The

communication cost of ODSEwo
xor is the smallest among all ODSE schemes since the size of search

query and the data transmitted from servers are only binary strings. In ODSEwo
ro and ODSEwo

it

schemes, the size of components in the search query vector is 16 bits. Their communication overhead

can be reduced by using a smaller finite field at the cost of increased PIR computation on the server

side.

The cost of PIR operations in ODSEwo
xor is negligible as it uses XOR tricks. The PIR

computation overhead in ODSEwo
ro and ODSEwo

it is reasonable because it operates on a considerably

large amount of 16-bit values. For the file update operations, the server-side cost is mainly due

to memory accesses to overwrite some columns of the encrypted index. ODSEwo
ro and ODSEwo

it

schemes are highly memory access-efficient since we store their matrix-based index column-wise in

the memory. This memory layout organization allows the inner product in PIR to access contiguous

memory blocks thereby, minimizing the memory access delay not only in the update but also in the

search. In ODSEwo
xor, we stored the matrix row-wise for row-friendly access to permit efficient XOR
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Figure 4.71: Delay of semi-honest ODSE with different query sizes.

operations during search. However, this requires file update to access non-contiguous memory blocks.

Hence, the file update in ODSEwo
xor incurred a higher memory access delay than that of ODSEwo

ro and

ODSEwo
it as shown in Figure 4.70.

The main limitation of ODSE schemes is the size of encrypted index, whose asymptotic cost

is O(n ·m), where n and m are the number of files and unique keywords, respectively. Given the

largest database being experimented, the size of our encrypted index is 23 GB. The client storage

includes two position maps of size O(m logm) and O(n log n), the stash of size O(m · log n), a

counter vector of size Ω(n) and a master key (in ODSEwo
xor scheme). Empirically, with the same

database size discussed above, the client requires approximately 22 MB in all ODSE schemes.

We studied the performance of our schemes and their counterparts in the context of various

keyword and file numbers involved in search and update operations that we refer to as “query size".

As shown in Figure 4.71, ODSE schemes are more efficient than using generic ORAMs when more

than 5% of keywords/files in the database are involved in the search/update operations. Since

the complexity of ODSE schemes is linear to the number of keywords and files (i.e., O(m + n)),

their delay is constant and independent from the query size. The complexity of ORAM approaches
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Figure 4.72: Delay of maliciously-secure ODSE schemes with one malicious adversary.
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Figure 4.73: Delay of maliciously-secure ODSE schemes with several malicious servers.

is O(r log2(n ·m)), where r is the query size. Although the bandwidth cost of ODSE schemes is

asymptotically linear, their actual delay is much lower than using generic ORAM, whose cost is

poly-logarithmic to the total number of keywords/files but linear to the query size. This confirms

the results of Naveed et al. in [136] on the performance limitations of generic ORAM and DSSE

composition, wherein we used the same dataset for our experiments.

we present the performance of maliciously-secure ODSE schemes described in §4.6.2.4. Fig-

ure 4.72 presents the search and update delay of MD-ODSEwo
xor, MR-ODSEwo

ro and MR-ODSEwo
it

schemes in the presence of one malicious adversary, compared with their corresponding semi-honest
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version. Recall that in this setting, we set the number of servers in the system for MD-ODSEwo
xor,

MR-ODSEwo
ro and MR-ODSEwo

it schemes to be two, three and four, respectively. We can see that the

search delays of maliciously-secure ODSE schemes are around two times slower than their semi-honest

version. It is mainly due to the additional processing and network transmission overhead for the

MAC components stored at the server-side, which has the same size with the encrypted index. The

update of MR-ODSEwo
ro and MR-ODSEwo

it schemes are around three times slower than that of their

semi-honest version. The main reason is that MR-ODSEwo
ro and MR-ODSEwo

it requires an extra server

in the system to detect one malicious adversary, which leads to the increase of the client bandwidth

overhead.

We also explored the performance of maliciously-secure ODSE schemes when the number of

malicious servers increases. Allowing more servers to be malicious requires to deploy more servers

in the system. Specifically, MR-ODSEwo
ro and MR-ODSEwo

it schemes need 2t+ 1 and 3t+ 1 servers

in total to be robust against t number of malicious servers, respectively. Figure 4.73 presents the

performance of maliciously-secure ODSE schemes with the varied number of corrupted servers. We

can see that it is expensive to offer the robustness for a number of malicious servers in the system.

This is because it incurs not only the client bandwidth overhead to communicate with more servers,

but also the client computation overhead. In the worst case, MR-ODSEwo
ro and MR-ODSEwo

it requires

the client to perform
(
`
t+1

)
and

(
`

2t+1

)
times of MAC verification, respectively, to find an authentic

|t|-bit data block in the presence of (less than) t malicious servers. Since MD-ODSEwo
xor can only

detect the malicious behavior (without knowing which server it is), its overhead only increases

slightly when allowing more servers to be malicious. This is because it only requires to deploy more

servers in the system, and the client aborts the protocol immediately when he/she finds an invalid
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MAC tag (without trying aggressively to find an alternative authentic block as in MR-ODSEwo
ro and

MR-ODSEwo
it schemes).

4.6.3 OMAT and OTREE: Oblivious Data Structures for Database Services

We propose two efficient oblivious data structures that permit various types of queries on

the encrypted databases: (i) Our first scheme is referred to as Oblivious Matrix Structure (OMAT).

The main idea behind OMAT is to create an oblivious matrix structure that permits efficient queries

over table objects in the database not only for the row but also column dimension. This is achieved

via various strategies that are specifically tailored for the matrix structure with a delicate balance

between the query diversity and the ORAM bandwidth overhead. This allows OMAT to perform

various types of oblivious queries without streaming a large number of ORAM blocks or maintaining

a very large position map at the client. (ii) Our second scheme is referred to as Oblivious Tree

Structure (OTREE), which is designed for oblivious accesses on tree-indexed database instances.

Given a column whose values can be sorted into a tree structure (i.e., numeric values), OTREE

allows efficient oblivious conditional queries (e.g., a range query).

We illustrate desirable properties of our schemes in Figure 4.74-(c,d), and further discuss

them as follows.

• Highly efficient and diverse oblivious queries: OMAT supports a diverse set of queries to be

executed with ORAM. Specifically, OMAT permits oblivious statistical queries over value-based

columns such as SUM, AVG, MAX and MIN. Moreover, oblivious queries on rows (e.g., insert, update)

can be executed on an attribute with a similar cost. As shown in Table 4.9, with the given

parameters and experimental setup, executing a column-related query such as statistical or

conditional query with OMAT is approximately 28× more communication efficient than that
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RowID Col1 Col2 Col3 Col4

Row1 A B C D

Row2 E F G H

Row3 I J K L

Row4 M O P Q
Row_1

Row_2 Row_3

Row_4

Tree-based ORAM Construction of Table A

(a) Limitations of Row-Oriented Packaging in DBaaS 

1. Statistical Queries: û
• Downloading all ORAM 

blocks for statistical results

2. Conditional Queries: û
• Downloading all ORAM 

blocks to check conditions

Tree-based ORAM Construction of Table A
(b) Limitations of Cell-Oriented Packaging in DBaaS 

A
B

C

D

E
F

G

H

I
J

K

L

M
O

P

Q

1. Size of Position Map: û
• O(MN)

2. Row-Related Queries: û
• Round-trip delay to fetch all 

cells in a row
3. Column-Related Queries: û
• Round-trip delay to fetch all 

cells in a column for queries 
such as conditional and 
statistical 

Table-A (MxN)
Client

Oblivious Access and 
Query to Table-A

STATISTICAL 
QUERY

CONDITIONAL 
QUERY

ROW QUERY ROW QUERY

(c) OMAT (Oblivious Matrix Structure): An oblivious matrix structure and new 
ORAM packaging strategies to permit diverse and efficient queries on table instances.
• Efficient and Oblivious Statistical Queries on Columns
• Efficient and Oblivious Conditional Queries on Columns without Indexing

• Efficient and Oblivious Row Queries

(d) OTREE (Oblivious Tree Structure): An oblivious tree structure and new  level-
based ORAM packaging strategies with a heap unification for tree-indexed databases.
• Efficient and Oblivious Access to Tree Data Structures
• Oblivious Access to Index-Tree for Efficient Conditional and Range Queries

Experiments and Open-Source
(i) OMAT and OTREE are fully implemented with Path-ORAM. (any tree-based ORAM scheme can be used) 

(ii) Performance evaluations on LAN server and in-state remote (Amazon EC2) server with MongoDB instances

STATISTICAL 
QUERY

CONDITIONAL 
QUERY

Desirable Properties of Our Proposed Schemes

Research Gap: Limitations of Existing Oblivious Database Access Approaches 

Figure 4.74: OMAT and OTREE motivation.

of RowPKG and this enables OMAT to perform queries approximately 13× faster than that of

RowPKG. Compared to ODS-2D, although OMAT is only 1.6 × more communication-efficient, it

performs approximately 5× faster in practice due to the large number of additional round-trip

delays. OTREE achieves better performance than ODS for obliviously accessing the database index,

which is constructed from the values of a column as a tree data structure. The communication

cost of OTREE is 1.6× less than that of ODS without caching. This gain can be increased up to

3.2× with the caching strategy.

• Generic instantiations from tree-based ORAM schemes: We notice that any tree-based ORAM

scheme (e.g., [169, 179]) can be used for both OMAT and OTREE instantiations. This provides

a flexibility in selecting a suitable underlying ORAM scheme, which can be adjusted according to

the performance requirements of specific applications. Note that we instantiated our schemes with

Path-ORAM [169] due to its efficiency, simplicity and not requiring any server-side computation.

• Comprehensive experiments and evaluations We implemented OTREE, OMAT, and their counter-

parts under the same framework. We evaluated their performance with a MongoDB database
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Table 4.9: Transmission cost and client storage for compared schemes.

Scheme Communication Costa Efficiencyb Client Storagec
End-to-End Delayd

Moderate
Network

High
Network

single column-related query (e.g., statistical, conditional queries)
RowPKG [42] Z · (_1 ·N) · (2M − 1) 1.00 O(M ·N) · w(1) 6096 s 776 s
ODS-2D [182] (M/4) · [Z · (16 · |b|1) · log2(M ·N/16)] 17.04 O(M · log(M ·N)) · w(1) 1245 s 292 s
OMAT Z2 · (|b|1·M) · log2(N) 28.44 O(M · log(N)) · w(1) 475 s 60 s

single row-related query (e.g., insert/delete/update queries)
RowPKG [42] Z · (|b|2·N) · log2(M) 1.00 O(N · log(M)) · w(1) 567 ms 56 ms
ODS-2D [182] (N/4) · [Z · (16 · |b|2) · log2(M ·N/16)] 0.19 O(N · log(M ·N)) · w(1) 2380 ms 350 ms
OMAT Z2 · (|b|2·N) · log2(M) 0.25 O(N · log(M)) · w(1) 2032 ms 128 ms

traversal on database tree index (e.g., range queries)
non-caching
ODS-Tree [182] 2 · Z1 · |b|·(H + 1)2 1.00 O(H) · w(1) 7929 ms 1318 ms
OTREE Z2 · |b|·(H + 1) · (H + 2) 1.60 O(H) · w(1) 3762 ms 592 ms
half-top caching
ODS-Tree [182] 2 · Z1 · |b|·

⌈
H+1

2

⌉
· (H + 1) 1.00 O(

√
2H) +O(H) · w(1) 5979 ms 1008 ms

OTREE Z2 · |b|·
⌈
H+1

2

⌉
·
(⌈
H+1

2

⌉
+ 1
)

3.20 O(
√

2H) +O(H) · w(1) 1676 ms 272 ms

• Table Notations: M and N denote the total number of (real) rows and columns in the matrix data structure, respectively. H is the height of
the tree data structure. Z and |b| denote the bucket size and size of each block (in bytes), respectively.
• Settings: We instantiate our schemes and their counterparts with underlying Path-ORAM for a fair comparison. The bottom half of the table
compares OTREE and ODS-Tree when combined with tree-top caching technique proposed in [127], in which we assume the top half of tree-
based ORAM is cached on the client during all access requests.
• Server Storage: All of the oblivious matrix structures require O(MN) server storage, however, the storage of OMAT is a constant (e.g., Z = 4)
factor larger than others. OTREE is twice more storage efficient than ODS.
a Represents the total cost in terms of bytes to be processed (e.g., communication/computation depends on the underlying ORAM scheme)
between the client and the server for each request. For OMAT , ODS-2D and RowPKG, the cost is for one access operation per query. For
OTREE and ODS, the cost is for traversing an arbitrary path in a binary tree.
b Denotes the communication cost efficiency compared to chosen baseline, where Z = 4, |b|1= 64, |b|2= 128,M = 215, N = 29 for ODS-2D, Row-
PKG and OMAT, and Z1 = 4, Z2 = 5 (for stability), |b|= 4096, H = 20 for ODS-Tree and OTREE.
c Client storage consists of the worst-case stash size to keep fetched data. Additionally, the position map of OMAT and RowPKG are O((M +
N) log(M + N)) and O(M · log(M)), respectively. For ODS based structures and OTREE, position map requires O(1) storage due to pointers
and half-top cached blocks are also included in client storage.
d The delays were measured with a MongoDB instance running on Amazon EC2 connected with the client on two different network settings.

instance unning on a remote AmazonEC2 server with two different network settings: (1) moderate-

speed network and (2) high-speed network. This permits us to observe the impact of real network

and cloud environment.

We now present our proposed oblivious data structures, which are specially designed for

efficient operations in database settings. We propose two schemes including Oblivious Matrix

Structure (OMAT) and Oblivious Tree Structure (OTREE). OMAT supports efficient oblivious

statistical queries on generic table instances, while OTREE supports range and conditional queries

on tree-indexed instances. Figure 4.75 outlines the overview of our proposed techniques. For our

oblivious data structures, we choose Path-ORAM [169] as the underlying ORAM for the following
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Figure 4.75: Overview of our proposed techniques.
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Figure 4.76: OMAT structure for oblivious access on table.

reasons: (i) It is simple yet achieves asymptotic efficiency. (ii) Unlike some recent ORAMs [54, 150]

that require computations at the server side, it requires only read/write operations. This is useful

since such advanced cryptographic operations might not be readily offered by well-known database

instances (e.g., MongoDB, MySQL). (iii) The availability of Path-ORAM implementations on existing

frameworks (e.g., CURIOUS [20]) enables a fair experimental comparison of the proposed techniques

with the state-of-the-art.

4.6.3.1 OMAT: Oblivious Access on Table Structures

The direct application of tree-based ORAMs to access encrypted tables in general [20] and

database systems in specific [42] have been shown to be inefficient for large datasets. Specifically, if

each row in the table is packaged into an ORAM block as in [42], then performing queries to fetch a
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data← OMAT.Access(op, dim, id):
1: b← pmdim[id].pid
2: if dim = col then
3: pmdim[id].pid

$← {1, . . . , 2dlog2(N)e−1}
4: H ← dlog2(N)e
5: else
6: pmdim[id].pid

$← {1, . . . , 2dlog2(M)e−1}
7: H ← dlog2(M)e
. Read all rows/columns on the path P(b)

8: for each ` ∈ {0, . . . , H} do
9: Sdim ← Sdim ∪ ReadBucket(dim,P(b, `))

10: data← Read row/column with id from Sdim

11: data← FilterDummy(data,S¬dim)
12: S¬dim ← Update(S¬dim, pmdim)
13: if op = write then
14: Sdim ← (Sdim \ {(id, data)}) ∪ {(id, data∗)}

. Evict blocks from the stash
15: for each ` ∈ {H, . . . , 0} do
16: S′dim ← {(id′, data′) ∈ Sdim|P(b, `) = P(pmdim[id′].pid, `)}
17: S′dim ← Select min(|S′dim|, Z) blocks from = S′dim

18: Sdim ← Sdim \ S′dim

19: o← 1
20: for each (id′, data′) ∈ S′dim do
21: pm[id′].level← `
22: pm[id′].order← o , o← o+ 1

23: WriteBucket(dim,P(b, `),S′dim)

24: return data

Figure 4.77: OMAT access protocol.

column in such a table (e.g., statistics) would require the client to stream all blocks in the ORAM

structure, which might be impractical. On the other hand, packaging each cell in the table into an

ORAM incurs a high network delay and client storage overhead. Thus, we investigate on how to

translate the table into an oblivious data structure so that each row and column of it can be both

accessed efficiently by a given ORAM scheme. Below, we first describe our oblivious data structure

and then present our OMAT access scheme on top of it.

The main data structure that we use for oblivious access on a table is a matrix. Given an

input table T of size M ×N , we allocate a matrix M of size Z · 2dlog2(M)e−1 × Z · 2dlog2(N)e−1. We

arrange tree-based ORAM building blocks for oblivious access as follows:
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The layout of OMAT matrix M can be interpreted as two logical tree-based ORAMs defined

as oblivious rows (denoted as OROW) and oblivious columns (denoted as OCOL) as illustrated in

Figure 4.76. That is, the ORAM for row access on OROW is formed by a set of blocks bi := (idi, datai),

where idi is either a unique identifier if bi contains the content of a row of the table T or null otherwise,

and datai ←M[i, ∗]. We group Z subsequent rows in M to form a bucket (i.e., node) in the OROW

structure. Similarly, the ORAM for column access on OCOL is formed by bj = (idj , dataj). Each

(bucket) node in OCOL is formed by grouping Z subsequent blocks.

We assign each row T[i′, ∗] (i′ = 1, . . . ,M) and each column T[∗, j′] (j′ = 1, . . . , N) with

a random leaf node IDs ui′ and vj′ in OROW and OCOL, respectively. That is, the data of T[i, ∗]

and T[∗, j] reside in some rows and columns of M along the assigned paths P(ui) in OROW and

P(vj) in OCOL, respectively. In other words, M[i, j]← T[i′, j′], where M[i, ∗] ∈ P(ui′) in OROW

and M[∗, j] ∈ P(vj′) in OCOL. Our construction requires two position maps (pmrow and pmcol) to

store the assigned path for each row T[i′, ∗] and each column T[∗, j′] of table T in OROW and

OCOL, respectively. Our position maps store all necessary information to locate the exact position

of a row/column data in the tree-based ORAM structures as pm := (id, 〈pid, level, order〉), where

0 ≤ level ≤ log2(N) indicates the level of the bucket, in which the row/column with id resides, and

1 ≤ order ≤ Z indicates its order in the bucket.

We present our OMAT scheme, which is instantiated with Path-ORAM, in Figure 4.77.

Specifically, given a column (resp. row) identifier (id) to be accessed22, the client retrieves its

location from the column (resp. row) position map (step 1). The client then assigns the column (resp.

row) to a new location selected uniformly at random (steps 2–7). The client reads all columns (resp.

rows) residing on the same path according to tree-based ORAM layout (as depicted in Figure 4.76(c)
22The access can be any types of operation such as read/add/delete/modify.
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to the stash (steps 8–9). In this case, we modify the original ReadBucket subroutine of Path-ORAM,

where it now takes an extra parameter (dim) that indicates the dimension to be read, and outputs

the corresponding Z columns/rows in the bucket. The client retrieves the column (resp. row) with

id from the stash (step 10). One might observe that according to OMAT structure, the retrieved

column (resp. row) will contain data from dummy rows (resp. columns) as depicted by empty blue

cells in Figure 4.76(b). Therefore, to obtain only the real data of the requested column (resp. row),

the client filters all data from dummy rows (resp. columns) (step 11). Moreover, since the position

of the retrieved column (resp. row) is moved to a new random position (steps 2–7), it is required to

update all rows (resp. columns) that are currently stored in the stash at this column (resp. row)

position to achieve the consistency (step 12). If the access is to update, the client then updates the

column (resp. row) with new data (steps 13–14) Finally, the client performs eviction as described in

Path-ORAM to flush columns (resp. rows) from the stash back to the OMAT structure in the server

(steps 15–23).

Notice that all columns/rows are IND-CPA decrypted and re-encrypted as they are read and

written to/from the server, respectively. We assume that it is not required to hide the information

whether a column or a row is being accessed. However, this can be achieved with the cost of

performing oblivious accesses on both row and column (one of them is dummy selected randomly)

for each access.

Recall that, in row-oriented packaging, implementing secure statistical queries on a column

requires downloading the entire ORAM blocks from the database. In contrast, OMAT structure

allows queries such as add, delete, update not only on its row but also on its column dimension.

Thus, we can implement statistical queries (e.g., MAX, MIN, AVG, SUM, COUNT, etc.) over a column in an

efficient manner via OMAT. Note that OMAT can also permit conditional query on rows with WHERE
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statement. Similar to statistical queries, the query can be implemented by reading the attribute

column on which the WHERE clause looks up OCOL first to determine appropriate records that satisfy

the condition, and then obliviously fetching such records on OROW structure. For example, assume

that we have the following SQL-like conditional search.

SELECT * FROM A WHERE C > k

It can be implemented by:

1. Read the column C with id′ on OCOL as C[∗, id′]← OMAT.Access(read, col, id′).

2. Get IDs of rows whose value larger than k, and such IDs are in pmrow as

I ← {id|id ∈ pmrow.id ∧C[id, id′] > k}

3. Access on OROW to get the desired result as R[id, ∗]← OMAT.Access(read, row, id), for each

id ∈ I.

The aforementioned approach can work with any unindexed columns. In the next section, we

propose an alternative approach that can offer a better performance if the columns can be indexed

with certain restrictions.

4.6.3.2 OTREE: Oblivious Access on Tree Structures

In the unencrypted database setting, conditional queries can be performed more efficiently, if

column values can be indexed by a search-efficient tree data structure (e.g., Range tree, B+ tree, AVL

tree). Figure 4.82 illustrates an example of a column indexed by a range tree for (non)-equality/range

queries, in which each leaf node points to a node in another linked-list structure that stores the list

of matching IDs. We propose an oblivious tree structure called OTREE, in which indexed data for
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Figure 4.78: The OTREE layout for a tree data.

such queries are translated into a balanced tree structure. As in OMAT, OTREE can be instantiated

from any tree-based ORAM scheme. Notice that oblivious access on a tree was previously studied in

[182]. Our method requires less amount of data to be transmitted and processed, since the structure

of indexed values (i.e., the tree data structure) is not required to be hidden, and the client is merely

required to traverse an arbitrary path of the tree. We present the construction of OTREE as follows.

Given a tree-indexed data T of height H as input, we first construct the OTREE structure

of height H with ORAM buckets as illustrated in Figure 4.78. Then, each node of T at level ` is

assigned to a random path and placed into a bucket of OTREE which resides on the assigned path

at level `′ where `′ ≤ `. In other words, any node of T at level 0 ≤ ` ≤ H will reside in a bucket at

level ` or lower in OTREE. If there is no empty slot in the path, the node will be stored in the stash

if OTREE is instantiated with stash-required ORAM schemes (e.g., Path-ORAM).

We assume T is sorted by nodes’ id and the position of nodes at level ` is stored in its parent

node at level `−1 using the pointer technique proposed in [182]. Hence, each node of T is considered

as a separate block in OTREE structure as: b := (id, data, childmap), where id is the node identifier

sorted in T (e.g., indexed column value), data indicates the node data, and childmap is of structure

〈id, pos〉 that stores the position information of node’s children.
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(data)← OTREE.Access(op, id, data∗):
1: x0 ← RootPos
2: S← S ∪ ReadBucket(P(x0, 0), 0)

3: b0 ← Read block with id0 = 0 from S
4: for each ` ∈ {0, . . . , H − 1} do
5: if compare(id, id`) = go_right then
6: (id`+1, x`+1)← b`.child[1]

7: b`.child[1].pos
$← {0, . . . , 2` − 1}

8: else
9: (id`+1, x`+1)← b`.child[0]

10: b`.child[0].pos
$← {0, . . . , 2`}

11: S← S ∪ ReadBucket(P`+1(x`+1, `+ 1))
12: b` ← Read block id` from S
13: if id = id` then
14: data← b`.data
15: if op = write then
16: S ← (S \ {b`}) ∪ {(id, data∗, child)}

17: for each `′ ∈ {`, . . . , 0} do
18: S′ ← {b′ ∈ S : P`(b′.pos, `′) = P`(b`.pos, `′) ∧ b′.level = `}
19: S′ ← Select min(|S′|, z) blocks from S′

20: S← S \ S′
21: WriteBucket(P`(x`, `′),S′)
22: return data

Figure 4.79: OTREE access protocol.

OTREE can be instantiated with any tree-based ORAM schemes (e.g., Ring-ORAM [150],

Circuit-ORAM [179]) , as similar to OMAT in §4.6.3.1, by modifying corresponding retrieval/eviction

procedures while preserving the constraints of OTREE regarding the deepest level of nodes. OTREE

also receives a significant benefit from caching mechanisms like top-tree caching [127], which can

speed up bulk access requests.

We give the proposed OTREE scheme instantiated with Path-ORAM in Figure 4.79. Specifi-

cally, given the node identifier id to be accessed in the id-sorted tree structure, the client first reads

the root bucket of Path-ORAM structure to obtain the root node of the tree (steps 1–3). The client

then compares the requested id with the root id to decide which child of the root node should be

accessed in the next step. The client accesses this child by reading its path in the Path-ORAM

structure from level 0 to level 1. We notice that for each node at level l in the tree to be accessed,
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Figure 4.80: Average bucket load in OTREE.

the client only accesses the path in the Path-ORAM structure up to level l. The process repeats

until the desired id is found (steps 4–16). Finally, the client performs eviction to flush read nodes

back to the Path-ORAM structure, wherein nodes at level l in the tree must reside somewhere in

the Path-ORAM structure from level 0 to level l (steps 17–21).

The construction and constraints of OTREE require a stability analysis to ensure that tree-

based ORAM scheme on OTREE behaves similarly to ODS in terms of the stash overflow probability.

We provide an empirical stability analysis of OTREE with Path-ORAM as follows.

We analyze the stability of OTREE in terms of the average bucket load in each level of the

ORAM tree. Intuitively, one would expect an increase in average bucket load near the top of the

ORAM tree, and a possible increase in the average client stash size if a Path-ORAM variant (e.g.,

[127, 150]) is used. We show empirically by our simulations, that OTREE behaves almost similar

to ODS with a bucket size of Z ≥ 4 with Path-ORAM. With Z = 5, bucket usage with OTREE

structure approaches that of the stationary distribution when using an infinitely large bucket size.

Our empirical study considered experiments with an ORAM tree of height H = 14 storing

N = 215 − 1 blocks. We ran the experiments with different bucket sizes to observe its effect on the
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Figure 4.81: Probability of stash size exceeding the threshold.

stash size and bucket usage. We treated ORAM blocks as nodes in a full binary tree of H = 14. We

inserted nodes into storage according to the breadth-first order via access functions followed by a

series of (H + 1)-length access requests, each of which consists of accessing a path of nodes from the

root to a random leaf node in the binary tree. A single-round experiment was the execution of 214

random root-to-leaf access sequences as described.

Figure 4.80 and Figure 4.81 show the results of these experiments for ODS and OTREE with

different bucket sizes. The results were generated by first running 1000 warm-up rounds after the

initialization, and then collecting statistics over 1000 test rounds. Figure 4.80 depicts that with a

bucket size Z = 5, buckets near the root of the OTREE structure contain roughly two non-empty

blocks (one more than the average number of blocks assigned to them). Figure 4.81 illustrates that

with Z ≤ 4, the probability of the stash size exceeding O(H) for OTREE diminishes quickly. These

results suggest that using Z = 5 for OTREE in order to make underlying ORAM scheme in OTREE

behaves similarly to that with Z = 4 on ODS.
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Figure 4.82: OTREE example for range queries.

We exemplify an implementation of a database index structured as OTREE for conditional

queries as follows: Consider a column whose values are indexed by a sorted tree T of height h by

putting distinct values as keys on leaf nodes as depicted in Figure 4.82. The leaf nodes of T points to

a node ID in a linked-list structure that contains a list of matching IDs with the key. We translate T

into OTREE, where each node at level ` < H stores the position maps of its children. We store a list

of IDs in each linked-list node using an inverted index with compression. As the data structure for

the linked-list, we employ ODS to store it in another ORAM structure (see [182] for details). Hence,

each leaf node of T stores the position map of a linked-list node in ODS it points to. An example

of a given conditional query is SELECT ∗ FROM A WHERE C = k, where the column C is indexed into

OTREE. It can be executed obliviously as follows.

1. Traverse a path with OTREE to get a leaf node as b← OTREE.Access(k).

2. Get ID and position map of linked-list node which b points to as (id, pos)← b.childmap.

3. Access on ODS to get the desired result as R ← ODS.Access(id, pos, ·).

The overall cost for this approach is: O(log2N + k ·O(log(N)), where k is the distance from

the first element of the linked-list. The first part is the overhead of OTREE and the second part is

the overhead of ODS (without padding).
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4.6.3.3 Security Analysis

Corollary 8. Accessing OMAT leaks no information beyond (i) the size of rows and columns, (ii)

whether the row or column dimension being accessed, given that the ORAM scheme being used on

top is secure by Definition 5.

Proof. Let M be an OMAT structure consisting of two logical tree-based ORAM structures OROW

and OCOL with dimensions M and N , respectively. Let the bit |b|= 0 if the query is on OROW and

|b|= 1, otherwise. A construction providing OMAT leaks no information about the location of a

node u being accessed in M beyond the bit |b| and dimensions (M,N). This is due to the fact that

OMAT uses a secure ORAM that satisfies Definition 5 to access each block of OROW and OCOL in

M. Thus, as long as the node accessed within OROW or OCOL is not distinguishable from any other

node within that OROW and OCOL through the number of access requests, it is indistinguishable

by Definition 5.

Note that the information on whether the row or column was accessed can be hidden by

performing a simultaneous row and column access on both dimensions for each query. This poses a

security-performance trade-off. One can also hide the size of row and column by setting OMAT matrix

with equal dimensions, but this may introduce some cost for certain applications.

Corollary 9. Accessing OTREE leaks no information about the actual path being traversed, given that

the ORAM scheme being used on top is secure by Definition 5.

Proof. Let T be a tree data structure of height H. Let T` be the set of nodes at level 0 ≤ ` ≤ H in

the tree. A construction providing OTREE leaks no information about the location of a node u ∈ T`

being accessed in the tree beyond that it is from T`. This is due to OTREE uses a secure ORAM
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that satisfies Definition 5 to access each level of the tree. Thus, as long as a node accessed within

level ` is not distinguishable from any other node within that level through the number of access

requests, it will be indistinguishable according to Definition 5.

There are several side-channel attacks on Path-ORAM (e.g., [13, 64]) when it is executed

by the secure CPU playing on behalf of the ORAM client. In this context, since the secure CPU

resides in the untrusted party, the adversary has a partial view on it to exploit the timing leakage

(e.g., [13]). In our model, we assume that the client is fully trusted and it is totally apart from the

adversary view (i.e., untrusted database server). Therefore, we do not consider these side-channel

leakages due to the difference between our model and the secure CPU context.

4.6.3.4 Experimental Evaluation

We implemented our schemes and their counterparts on CURIOUS framework [20]. We

integrated additional functionalities into the framework to perform batch read/write operations

to prevent unnecessary round-trip delays, and also to communicate with MongoDB instance via

MongoDB Java Driver. We chose MongoDB as our database and storage engine. We preferred

MongoDB since its Java Driver library is well-documented and easy to use. Moreover, it supports

batch updates without restrictions, which is important for consistent performance analysis.

We created our database table with randomly generated data with a different number of

rows, columns, and field sizes. We then used the table to construct tree-based ORAMs for compared

schemes. For instance, in OMAT, we created OROW and OCOL structures from this table, while an

oblivious tree structure is created for OTREE.
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For our experiments, we used two different client machines on two different network settings:

(i) A desktop computer that runs CentOS 7.2 and is equipped with Intel Xeon CPU E3-1230, 16 GB

RAM; (ii) A laptop computer that runs Ubuntu 16.04 and is equipped with Intel i7-6700HQ, 16 GB

RAM. For our remote server, we used AmazonEC2 with t2.large instance type that runs Ubuntu

Server 16.04. While the connection between the desktop and the server was a high-speed network

with download/upload speeds of 500/400 Mbps and an average latency of 11 ms, the connection

between the laptop and the server was a moderate-speed network with download/upload speeds of

80/6 Mbps and an average latency of 30 ms.

We evaluated the performance of our schemes and their counterparts based on the following

metrics: (i) The Response time (i.e., end-to-end delay) including decryption, re-encryption and

transmission times to perform a query; (ii) Client storage including the size of stash and position

map; (iii) Server storage including the size of OMAT or OTREE. We compared the response times of

OMAT and its counterparts for both row- and column-related queries (e.g., statistical, conditional).

For OTREE and ODS-Tree, we compared the response times of traversing an arbitrary path on the

tree-indexed database. To measure the end-to-end delay, we used the std::chrono C++ library to

get the actual duration at the client side, from the time the client sends the first command until

he receives the last response from the Amazon server. For each experiment, we ran 50 times and

took the average number as the final response time reported in this section. We now describe our

experimental evaluation results and compare our schemes with their counterparts.

We first analyze the response time of column-related queries for OMAT, ODS-2D and

RowPKG. With these queries, the client can fetch a column from the encrypted database for

statistical analysis or a conditional search. Given a column-related query, the total number of bytes

to be transmitted and processed by each scheme are shown in Table 4.9. RowPKG’s transmission
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Figure 4.83: Delay of OMAT and its counterparts with fast network.

cost is the size of all ORAM buckets, where H · (|b|·N) and (2M − 1) denote the bucket size and

the total number of buckets, respectively. As for OMAT, its oblivious data structure OCOL allows

efficient queries on column dimension with O(log(N)) communication overhead, which outperforms

the linear overhead of O(N) of RowPKG. While OMAT and RowPKG can fetch the whole column

with one request, it requires M/4 synchronous requests for ODS-2D where each request costs

Z · (16 · |b|1) · log2(M ·N/16) bytes due to 4× 4 clustering of the cells.

We measured the performance of OMAT and its counterparts with arbitrary column queries.

In this experiment, we set parameters as |b|= 64 bytes and Z = 4. The number of columns N varies

from 24 to 29, where the number of rows is fixed to be M = 215. Figure 4.83a and Figure 4.84a

illustrate the performance of the schemes on two different network settings with two different client

machines. For a database table with 210 rows and 29 columns, OMAT’s average query times are

60 s and 475 s compared to RowPKG’s 775 s and 6100 s, and ODS-2D’s 292 s and 1245 s on high-

and moderate-speed networks, respectively. This makes OMAT about 13× faster than RowPKG.

While OMAT performs 2.6× faster than ODS-2D on the moderate-speed network, it becomes 4.9×
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Figure 4.84: Delay of OMAT and its counterparts with moderate network.

on high-speed network since the latency starts to dominate the response time of ODS-2D with M/4

requests due to its construction with pointers.

We now analyze the response time of row-related queries for OMAT and its counterparts.

Given a row-related query, the total number of bytes to be transmitted and processed by OMAT and

its counterparts are summarized in Table 4.9. For OMAT and RowPKG, (|b|·N) and Z · log2(M)

denote the total row size and the overhead of Path-ORAM, respectively. Due to OMAT’s OCOL and

OROW structures, OMAT is always a constant factor of Z = 4 more costly than RowPKG. Clustering

strategy of ODS-2D also introduces more cost and makes ODS-2D 4.2× more costly than RowPKG

when N = 32.

We measured the performance of OMAT and its counterparts with arbitrary row queries,

where the number of rows M varies from 210 to 220. The block size is |b|= 128 bytes and the

number of columns is fixed as N = 32. By this setting, the total row/record size is |b|·N = 4096

KB. Figure 4.83b and Figure 4.84b illustrate the performance of the compared schemes for both

network settings. We can see that OMAT performs slower than RowPKG by a constant factor of
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Figure 4.85: Delay of OTREE and ODS-Tree.

approximately 2.3× and 3.6× on high and moderate-speed network, respectively. As for ODS-2D,

Figure 4.83b explicitly shows the effect of the round-trip delay introduced by network latency on

ODS-2D due to N/4 synchronous requests. Although ODS-2D has similar cost with OMAT, it

performs approximately 220ms and 380ms slower than OMAT.

We analyze the response time of oblivious traversal on database index that is constructed as

a range tree by putting distinct values of a column to the leaf of the tree. Figure 4.82 exemplifies the

constructed range tree, and this structure is used along with its linked list to perform conditional

queries (e.g., equality, range) on an indexed column, and fetch matching IDs. We compare our

proposed OTREE and ODS-Tree with no caching and half-top caching strategies.

Given a database index tree constructed with values of the column, the total number of bytes

to be transmitted and processed by OTREE and ODS-Tree without caching are Z2 · |b|·(H+1) ·(H+2)

and 2 · Z1 · |b|·(H + 1)2, respectively, where H is the height of tree data structure. While ODS

traverses the tree with O(H), the additional overhead of Path-ORAM makes the total overhead to

be O(H2). As for OTREE, its level restriction on ORAM storage reduces the transmission overhead
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by 1.6×. With half-top caching strategy, overheads of both schemes reduce as shown in Table 4.9,

however, OTREE’s construction benefits more from caching by performing traversal 3.2× less costly

than ODS-Tree.

For this experiment, we set the block size |b|= 4 KB, the number of blocks inside a bucket

for ODS-Tree is Z1 = 4, and the number of blocks inside a bucket for OTREE is Z2 = 5. We

benchmarked OTREE and ODS-Tree with arbitrary equality queries when the number of indexed

values varies from 29 to 219. The number of indexed values is set to 219 for large database setting.

For both network settings, Figure 4.85 demonstrates the effect of half-top caching strategy and

how the structure of OTREE gives more leverage in response time. While OTREE without caching

performs around 2× faster than its counterpart, caching allows OTREE to perform 3.6× faster than

ODS-Tree with caching for both network settings.

We now analyze the client storage overhead of our schemes and their counterparts. The

position map of OMAT requires O((M +N) · log(M +N)) storage, while RowPKG requires O(M ·

log(M)), since only the position map of rows are stored. However, the dominating factor is M ,

since large databases have more rows than columns. ODS’s pointer technique allows it to operate

with O(1) storage for position map. Moreover, the worst-case stash size changes with the query

type, because stash is also used to store currently fetched data and the worst-case storage costs

are summarized in Table 4.9. For row-related queries, the worst-case stash storage is the same for

both OMAT and RowPKG but ODS-2D requires more storage due to clustering. For column-related

queries, RowPKG requires storing O(M ·N) that corresponds to all ORAM buckets. Besides the

query performance issues, this also makes RowPKG infeasible for very large databases to perform

column-related queries. In addition, ODS-2D also requires O(log(M)) times more client storage
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compared to OMAT. While RowPKG and ODS-2D have the same server storage size, OMAT requires

constant Z× more storage due to additional dummy blocks.

Since OTREE and ODS do not require the position map to operate, the client storage consists

of the stash and additionally cached block according to the caching strategy used. For the worst-case,

both schemes have the same client storage with the same caching strategy; however, the stash of

OTREE may be more loaded than ODS as shown in Figure 4.81 due to its level restriction. Moreover,

server storage of OTREE is 2× less than ODS, since Path-ORAM of ODS requires one more level

than OTREE.
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Chapter 5: Hardware-Supported Oblivious Storage and Query Platforms23

5.1 Introduction

Search and update are two fundamental functions in any data outsourcing and analytic

platforms. While ORAM can protect the access pattern and confidentiality while conducting

encrypted search and update operations, it incurs high communication/computation, or deployment

costs (i.e., by hiring multiple servers). To address this issue, one line of research harnessed secure

hardware to support ORAM [8, 62, 127, 152, 159]. Initial studies designed a custom hardware (e.g.,

FPGA) to enhance the ORAM performance, and therefore, they might not be easily integrated

into commercial server systems with a legacy architecture [62, 127, 152]. Thanks to the advent of

trusted execution environments recently on commodity hardware such as Intel SGX [46, 100, 101],

the deployment of hardware-supported cryptographic primitives has become more feasible [8, 60, 159].

Several oblivious encrypted search platforms have been proposed [66, 172]; however, they incur a

high delay when dealing with a large amount of outsourced data since its cost grows linearly with

the database size. Moreover, state-of-the-art solutions did not fully investigate the update capability,

which is an essential feature of data-outsourcing applications.

It is also common that the outsourced database can be shared by multiple users, in the sense

that every user may have different permissions to access a specific data item. While ORAM can

be extended to support the multi-user setting, doing so brings up new challenges such as network

bandwidth overhead, complexity of handling concurrent access, asynchronicity, access control, etc.
23This chapter was published in [86, 91]. Permission is included in Appendix A.
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Although there exist several ORAM schemes, which support either access control [128, 129] or

parallelization [28, 41, 43, 140], they may not fully satisfy all the functionality, performance, and

security requirements. Maffei et al. in [129] showed that there exists a computation lower bound of

Ω(N) to achieve both the access control and access pattern obliviousness against an active adversary.

A more efficient approach is to use a trusted proxy to handle multi-user concurrent accesses and

enforce access control [20, 158, 166, 167, 186]. However, fully asynchronous proxy designs [20, 167]

were shown insecure against timing attacks [158] exploiting access pattern leakages in processing

concurrent requests. To fix this vulnerability, Sahin et al. proposed TaoStore [158], the most efficient

and secure proxy design to-date, which allows passive ORAM protocols (e.g., Path-ORAM) to be

securely executed in parallel over the network. Despite their merits, all proxy designs execute the

standard ORAM protocols over the network so that their performance is capped by the limitations

of the network bandwidth and latency, and fail to scale beyond that limit. Since all proxy designs

are originally proposed to exploit the maximum network throughput for concurrent accesses, they

do not focus on access control enforcement or handling an active adversary. Maffei et al. in [129]

pointed out that proxy-based designs can offer access control enforcement with the incorporation

of an access control data structure and authentication at the proxy. A detailed exploration of this

enhancement in practical settings is a worthy investigation.

Our objective is to take the ORAM supported by commodity secure hardware to the next

levels, in which we develop privacy-preserving and functional platforms using Intel SGX that can

support (i) practical search/update operations on very large database, (ii) concurrent access from

multiple users (iii) access control enforcement while, at the same time, (iv) concealing the access

pattern and achieving confidentiality and integrity. We implemented our techniques to demonstrate

their efficiency compared with state-of-the-art approaches.
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5.2 Related Work

To enable multi-user concurrent access, several Parallel-ORAM schemes have been introduced

[28, 41, 43, 140]. However, these constructions feature large block size [41], or add poly-logarithmic

communication blowup atop standard ORAM [28, 43, 140]. Maffei et al. proposed several access

control-supported ORAM schemes (e.g., [128, 129]), and provided a computation lower bound of

Ω(N) for the composition of access control and ORAM against active adversaries.

ObliviStore [168] and its extended multi-server version [166] were among the first to exploit

a trusted proxy for concurrent oblivious access in the multi-user setting. In these systems, the

proxy schedules concurrent user’s requests and then, executes Partition-ORAM [168] with the

storage server [20, 158, 166, 167]. Since ObliviStore only parallelizes requests on different blocks,

but sequentializes same-block requests, it leaks timing information. This allows an adversary to

distinguish access patterns from multi-users. To seal this leakage, CURIOUS framework [20] also

parallelizes same-block requests by invoking one actual ORAM operation along with several dummy

ORAM operations between the proxy and storage server. Although this design enables CURIOUS

to be fully asynchronous (i.e., one request can be processed immediately without waiting for the

previous requests to be finished), Sahin et al. [158] showed that it still leaks timing information.

Specifically, because dummy ORAM operations do not return the actual block being requested to

the proxy, concurrent requests on the same block cannot be answered until the real one is finished.

Given that the adversary can observe all network traffic coming from the proxy, and even reschedule

the network package delivery from the storage server, it can learn the timing difference in replying

same-block requests vs. different-block requests of the proxy. Another limitation is that, they rely on

Partition-ORAM [168], which incurs costly communication overhead due to the background eviction

and high proxy storage overhead (i.e., O(
√
N)).
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To seal timing information leakage, Sahin et al. [158] indicated that the proxy must reply

users’ requests sequentially according to their arrival order. The authors proposed TaoStore, which

implements two modules called Processor and Sequencer at the proxy, where the former executes a

standard ORAM (i.e., Path-ORAM [169]) with the storage server in parallel via multiple threads,

while the latter is to reply users’ requests sequentially. Once a thread obtains data from the storage

server due to ORAM operation, Processor will lock the proxy’s local memory and synchronize it

with the fetched data, and then transfers the desired block to the Sequencer for user reply. TaoStore

is also more efficient than previous designs because it employs Path-ORAM [169].

Given that the ORAM communication lower bound has been well-established [74, 119, 179],

recent studies start to look for the support of secure hardware to make ORAM for client-server

applications more practical. The idea of ORAM and secure-hardware composition was first suggested

by concurrent studies in 2013 [62, 125, 127, 152]. However, these these techniques harnessed a custom

hardware such as FPGA, which may not be widely available on commodity cloud platforms. With the

advent of widely available trusted execution environments on commodity hardware (e.g., Intel SGX),

the deployment of hardware-supported cryptographic primitives has become more feasible. For

instance, ZeroTrace [159] and Obliviate [8] leveraged Intel SGX with ORAM to enable oblivious

memory primitives and file access operations, respectively. Intel Intel SGX was also used to design

a functional encryption framework in [60]. These works did not focus on multi-client setting and

access control enforcement. Another relevant work is [55], which harnesses SGX to enforce access

control policy and encryption services. However, it does not provide the access pattern obliviousness.
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5.3 Intel-SGX

Intel Software Guard eXtension (SGX) [100, 101], available from Skylake since 2015, is the

Intel’s commodity implementation of Trusted Execution Environment (TEE) as an extension to

the commodity x86 Instruction Set Architecture (ISA) Its motivation is to have a minimal Trusted

Computing Base (TCB), which is only the program that runs in the TEE, by putting a hardware

trust anchor in the CPU, thus SGX even excluding the operating system from its trust model.

SGX provides an Enclave, which isolates its memory from untrusted system components

other than CPU and also protects the integrity and confidentiality of its memory. Intel SGX isolates

the enclave’s execution by providing a private memory called the enclave page cache (EPC), which

resides in a reserved space in DRAM (the processor reserved memory, PRM) [46]. The EPC is

isolated from the other software security domains by SGX’s hardware mechanism. Thus, SGX blocks

any software attempt to read/write enclave’s memory from user-level as well as privileged-level

(including operating systems and virtual machine monitor) attackers. Moreover, because SGX

encrypts (with integrity check) the data before storing it on to DRAM, EPC stores only encrypted

data on it. Therefore, any hardware attempt to read enclave’s memory will not leak any meaningful

information, and any tampering to enclave’s memory will be detected (and then SGX stops the

enclave’ execution).

SGX supports the remote attestation of the enclave to authenticate whether the configuration

of the enclave is correct and to share a secret key for secure communication [46, 102] only after the

authentication. When a remote attestation request initiated by a client is delivered to the enclave,

the SGX subsystem will run the trusted quoting enclave, which creates a measurement (i.e., hash of

configurations, loaded program with a nonce, and a public key material for key exchange) of the

enclave and signs it (with the quoting enclave’s key). This measurement will be submitted to the
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Intel Attestation Service (IAS) to verify the quoting enclave’s signature; the result will be signed by

IAS and then will be delivered to the client. By verifying IAS’s signature on the result, the client

ensures that a correct enclave is running on the server. The attestation message also includes public

key parameters of the Diffie-Hellman key exchange of the client and the enclave so that a client can

securely communicate with the enclave after this process, by encrypting data using the shared secret.

The root of trust of Intel SGX relies on an infrastructure provided by Intel (e.g., the Intel

Attestation Service and the quoting enclave). Our current implementation uses Intel SGX for its

secure enclave; therefore, its privacy is bound to Intel’s discretion. However, we believe that this is

just an implementation-specific issue and that the use of alternative open-source secure enclaves such

as Sanctum [47] on the RISC-V architecture [183] could relax this restriction, e.g., by distributing

trust over the Public Key Infrastructure (PKI), similar to how Transport Layer Security (SSL/TLS)

works in practice.

Because an enclave is a part of the user-level process, Intel SGX does not provide any

protection on privileged operations such as system calls, e.g., file and network I/O, etc. Because

such operations have to be performed by the untrusted OS, the enclave must encrypt data before

transferring them to the OS. For example, a network communication between the client and the

enclave should apply encryption to their connection, and a file write operation should store only

encrypted data. For this purpose, Intel provides cryptographic libraries and tools for secure data

migration between the enclave and the OS so the enclave can securely communicate across the

security boundary if it is provisioned with a secret key for the encryption; this can be done securely

via remote attestation.
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5.4 POSUP: Practical Oblivious Search and Update Platform

We design a new hardware-assisted privacy-enhancing platform that we refer to as Prac-

tical Oblivious Search and Update Platform (POSUP). Our proposed POSUP enables oblivious

(single/multi)-keyword search and update operations on very large datasets in a much more efficient

and practical manner compared with existing techniques. Our system design is inspired from

ZeroTrace [159], where we synergize SGX-supported ORAM with Oblivious Data Structure (ODS)

[182] to enable oblivious keyword search and update operations on encrypted data. This synergy

(i) addresses the network bandwidth and communication hurdles of ORAM-SE composition in the

client-server setting; (ii) eliminates the cost of processing the entire database inside Intel SGX as in

[66, 172]; and more importantly, (iii) allows for operation on a large outsourced database without

being restricted by Intel SGX memory as in [8]. This composition also enables efficient oblivious

keyword update capacity. We further outline our contributions as follows:

1. New oblivious search and update platform design with SGX: We construct ODS instantiations

for EIDX and EDB by harnessing Intel SGX with Path-ORAM [169] and Circuit-ORAM [179].

POSUP allows for some query types such as single keyword and multi-keyword queries. Moreover,

POSUP supports an efficient oblivious update via our optimization tricks that exploit some

special characteristics of the underlying oblivious data structures.

2. Full-fledged implementation and evaluation: We implemented POSUP and evaluated its perfor-

mance on commodity hardware with a large dataset (e.g., a full-size Wikipedia English corpus)

containing hundreds millions of keyword-file pairs and millions of files. Our implementation is

efficient, taking only 1 ms to obliviously access a 3KB block with SGX hardware. Our experi-
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mental results showed that POSUP incurs much lower end-to-end delay than state-of-the-art

solutions as follows:

• Compared with the ORAM-SE composition in the conventional client-server model (without

a secure hardware), POSUP incurs 100× less network bandwidth overhead and and 1000×

fewer network communication round-trips. As a result, the end-to-end delay of POSUP is two

orders of magnitude lower than that of this approach for both keyword search and update

operations (see §5.4.6 for detailed experiments).

• Compared with processing the entire database in Intel SGX (e.g., [66, 172]), POSUP requires

less data to be processed by the enclave (i.e. O(logN) vs. O(N), where N is the size of

outsourced database). This results in POSUP having 10× lower end-to-end delay than the

existing techniques for up to 99.5% of keywords (see §5.4.6). If the number of searched files

is small, POSUP can be 100× faster. Moreover, POSUP allows oblivious updating, which

does not seem to be fully investigated in state-of-the-art SGX-assisted platforms (e.g., [66]).

3. Putting hardware-supported ORAM in real effect: We take the concept of hardware-supported

ORAM primitives to the next level, wherein we develop oblivious data structures and routines

with optimizations to provide practical search and update functionalities on large databases,

which was not investigated by existing hardware-supported memory primitives (e.g., ZeroTrace).

Our implementation will be available at: www.github.com/thanghoang/POSUP.

POSUP’s objective is to utilize a public cloud server, which is equipped with commodity

secure hardware, as secure storage that supports search and dynamic update operations over very

large encrypted datasets. To this end, POSUP aims at deploying a practical oblivious encrypted

search and update platform to guarantee data confidentiality and no access pattern leakage during
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Figure 5.1: An overview of POSUP workflow.

search and update operations, along with a trusted execution. Specifically, to defeat attacks against

data confidentiality and access pattern leakages, POSUP creates a commodity hardware-supported

ORAM and Oblivious Data Structure (ODS) platform, which enables oblivious searches and updates

efficiently, even for very large datasets. To defeat attacks against the server’s execution logic, POSUP

runs its ORAM and ODS controllers in an enclave protected by Intel SGX.

5.4.1 System and Threat Models

5.4.1.1 System Model

We first describe our system composition and then summarize our POSUP workflow.

Figure 5.1 illustrates the components of POSUP and its composition: a client, an untrusted

server, and a trusted enclave on the server. A client (the box on the left side) is a remote entity

that generates and manages recursive ORAM and ODS components on the untrusted server via an

encryption key ko. After initializing the system, the client can send a query to update data on the

server or to search data and then receive the search results from the server.
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The server comprises two parts: an untrusted server and a trusted enclave. (i) The untrusted

server provides storage for recursive ORAM and ODS data structures. (ii) The enclave is a trusted

part of the server and executes ORAM and ODS controller (while protected by Intel SGX). On

behalf of the client, the enclave performs all oblivious search/update operations upon the client’s

request on the encrypted data structures stored on the untrusted server. To do this, the enclave

receives the encryption key ko from the client via a secure channel at the initialization.

Figure 5.1 outlines the overview of oblivious search and update in POSUP.

The client first performs the remote attestation of the enclave (provided by Intel SGX), which

is running on the untrusted server. This attestation step not only verifies that the program running

in the enclave is intact but also exchanges cryptographic keys (a session key Ks) to establish a secure

(encrypted) channel between the client and the enclave. After establishing the secure channel, the

client also sends a key ko to the enclave, which will be used for ORAM operations.

Upon receiving the key, the enclave on the server will initialize encrypted data structures.

Our POSUP is composed of two main encrypted data structures: ODS-IDX, which is an encrypted

index that represents keyword-file relations, and ODS-DB, which stores encrypted files. Both data

structures are stored in the server’s untrusted memory. We employ the ODS techniques proposed in

[182] to instantiate ODS-IDX and ODS-DB. This data structure initialization step happens only at

the first connection. In other words, to perform search and update operations, the client requires

only that a session key (Ks) be exchanged with the enclave.
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1 The client encrypts the search (resp. update) query with the session key Ks, and sends it

to the enclave (through the untrusted server). 2 Upon receiving the encrypted query, the enclave

decrypts it with Ks. 3 The enclave scans the entire keyword hash table24

All these strategies enable us to achieve oblivious keyword search/update operations more

efficiently than processing the entire ODS-DB and ODS-IDX in the enclave [66, 172]. Our system

is also more efficient than the direct application of existing SGX-ORAM memory primitives [159]

because we harness the ODS technique for both ODS-DB and ODS-IDX, which reduces the number

of recursive calls when executing an oblivious keyword search/update query.

5.4.1.2 Threat Model

We build POSUP based on the following assumptions as its threat model. The client is fully

trusted and transfers only the ORAM encryption key ko to the enclave after establishing a secure

channel with the enclave (Therefore, untrusted parts of server cannot obtain this key). To establish

this secure channel, we rely on the remote attestation protocol provided by Intel SGX. Thus, we

need a trusted authority (right now, it is Intel) for this remote attestation protocol; however, this

does not have to be Intel if we utilize a different kind of secure enclave (e.g., Sanctum [47]). We

assume the server is untrusted except for the enclave. Specifically, we do not trust any of the server’s

logic that includes a virtual machine monitor, operating system and drivers, software that manages
24Since keyword universe is arbitrarily large, it is mandatory to maintain a hash table that uniquely matches each
keyword to a block ID in the encrypted index for a given dataset (see §5.4.3.1 for more details). to retrieve block IDs
and their location (path) in ODS-IDX that correspond to the query. 4 If the query is to search, the enclave performs
ODS accesses on ODS-IDX using the ORAM key ko to get matching file IDs. 5 The enclave determines the location
of file IDs in ODS-DB by executing recursive ORAM accesses with ORAM key ko on the file position map structure.
6 The enclave performs ODS accesses on ODS-DB with ko to retrieve file(s) associated with the query. 7 The
enclave encrypts retrieved files with Ks and sends them to the client. 8 The client recovers encrypted files with Ks.
The enclave performs the same procedure as search for handling the update query, where it first performs a keyword
hash table scan and ODS accesses on ODS-IDX to update blocks in the encrypted index, followed by a recursive
ORAM access on the file position map and an ODS access on ODS-DB to update file blocks in the encrypted files.
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storage, etc. This is a general assumption for a system that utilizes an enclave because Intel SGX

isolates and applies encryption to the enclave’s memory space using hardware mechanisms.

Intel SGX does not come without limitations; it suffers from various side-channel attacks in

cache access [30, 78, 83, 122], memory access [31, 187], registers [121], etc [106, 184]. Unfortunately,

preventing side-channel attacks against Intel SGX entirely is a very challenging task. Instead

of making POSUP side-channel free, we aim only to make POSUP secure against several known

side-channel attacks on Intel SGX, which are mentioned above. For simplicity, we do not focus

on securing POSUP against size and timing information leakage, which can be easily achieved via

padding. We refer the reader to §5.4.5 for a more detailed discussion.

5.4.2 POSUP Building Blocks

We use Intel SGX as a trusted execution environment to protect the execution of the ORAM

controller on the untrusted server. We run the logic in an SGX enclave, which guarantees the

isolation and confidentiality of its execution, to protect the ORAM controller logic from attacks.

We utilize the remote attestation protocol of Intel SGX to check the integrity of our logic and

securely exchange/provision secret keys for storing ORAM data structures, as well as to protect

communication channels between the enclave and the client. We also implement our logic in the

enclave using oblivious primitives in the Intel processor such as CMOV and SETE instructions to prevent

potential access pattern leakage.

We implement oblivious assignment (oupt) and oblivious equality comparison (ocmp) func-

tions based on CMOV and SETE instructions proposed in prior works [142, 149], which do not leak

access patterns via control-flow side-channel attacks when POSUP executes the ORAM controller

inside the enclave as follows.
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• pred← ocmp(x, y): It takes as input two values x, y, and outputs pred = 1 if x = y or pred = 0

otherwise.

• z ← oupt(pred, x, y): It takes as input two values x, y and a boolean pred. It assigns z ← y if

pred = 1, and z ← x otherwise.

We refer interested readers to prior works [142, 149] for a detailed description of these

functions. Note that our ocmp function slightly differs from what was originally proposed in [142],

where we employ SETE instead of SETG instruction for equality checking.

ZeroTrace [159] proposed OReadPath and OEvict, which are secure versions of ReadPath and

Evict tree-based ORAM functions, respectively, both of which are executed by the enclave without

leaking side-channel access patterns. We implemented our version of OReadPath and OEvict and

refer readers to ZeroTrace [159] for a detailed description. In OReadPath and OEvict, we scan the

entire stash and path and then use ocmp and oupt to put real blocks from the path to the stash,

or vice versa. This results in Path-ORAM being more computation-expensive than Circuit-ORAM

as follows. Since Path-ORAM pushes all real blocks from the path to the stash or vice-versa, its

OReadPath and OEvict incur two nested loops, where we must scan the entire stash for each path slot

access to hide the access pattern. Circuit-ORAM processes only one targeted block at a time and

only incurs two separate loops that scan the entire path once to get target blocks and the entire stash.

As a result, Circuit-ORAM is more computation-efficient than Path-ORAM when dealing with a

B ← OGet(S, id):
1: B ←⊥
2: for i = 1, . . . , |S| do
3: v ← ocmp(S[i].id, id)
4: B ← oupt(v, S[i], B)

5: return B

Figure 5.2: OGet function in POSUP.
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ODS-IDX

Real file blocks

ODS-DB

Real index blocks
Pointer to next block Pointer to next block

Block ID
(bID)

Path
(pID)

1 1
2 4

Keyword Block ID
(bID)

Path
(pID)

Count
(𝜎)

hello 1 2 15
world 2 3 8

Keyword position map File position map
(stored at the server recursively 

in small ORAMs)
(stored at the server 
in encrypted form)

Figure 5.3: Illustration of ODS-IDX and ODS-DB packaged into ORAM tree in POSUP.

large dataset and large block size (see §5.4.6). We then implement the OGet function (Figure 5.2),

which reads a block ID from the stash S into the enclave without leaking access patterns via ocmp

and oupt.

5.4.3 The Proposed POSUP Platform

We first describe the oblivious data structures in POSUP. We then present the oblivious

search and update protocol in detail.

5.4.3.1 Oblivious Data Structures

Figure 5.3 presents the overview of ODS-IDX and ODS-DB in POSUP. ODS-IDX and ODS-DB

follow the tree ORAM paradigm in [161] because POSUP harnesses Path-ORAM and Circuit-ORAM

as oblivious access cryptographic primitives. We create a search index (IDX) from a set of plaintext

files (DB) and then package IDX and DB into ODS-IDX, ODS-DB, respectively, as follows.
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We construct IDX as an inverted index, in which given DB as the input, we extract unique

keywords and associate each keyword wi with the list of corresponding file IDs idij that wi appears

in as wi := (idi1 . . . , idin). We divide the list of each keyword in IDX into multiple chunks of the

same size and package them into separate tree ORAM blocks. We use the pointer trick (i.e., linked

list in [182]) to connect these blocks with each other, where the information of successive blocks is

stored in their predecessors. Thus, each block is in the form of B := (id,DATA,NextID,NextPath),

where id is the block ID; DATA := (〈fid1, σ1〉, . . . , 〈fidn′ , σn′〉) is the block data, which contains a

partial list of file IDs (fid) as well as their state (σ ∈ {0, 1}) indicating whether they are added or

deleted; NextID and NextPath are the ID and the path of the next block, respectively. Finally, we

create ODS-IDX by putting all constructed blocks into a tree ORAM structure.

Since keywords are arbitrary and can be of any length, POSUP maintains a hash table data

structure (TW) to map each arbitrary keyword to an ORAM block ID (id) as well as its path (pid)

in ODS-IDX. Additionally, POSUP stores a counter (ci) for each keyword in TW to indicate the

actual number of 〈fid, c〉 pairs that are stored in the head block of the list. So, TW is of the form

〈key, value〉, where key is the hash of the keyword and value contains a triplet (id, pid, c). We denote

the access operation to the value component in TW as (id, pid, c)← TW[wi].

In POSUP, we maintain TW under the encrypted form in the storage server. This allows

the client to be stateless and easily extensible to the multi-client setting (see §5.4.4 for further

discussion). Since, to the best of our knowledge, there is no oblivious hash table mechanism, the

enclave performs a linear scan on TW for reading/writing component(s) in TW to hide the access

pattern. Notice that recursive-ORAM might not be applied on TW because it requires deterministic

indexes to operate, while keywords to be accessed are arbitrary.
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ODS.Setup(DB):
1: B ← ∅;B′ ← ∅
2: W := (w1 . . . , wM )← Extract all unique keywords in DB

3: Construct inverted index IDX ←
(
〈wi,
−→
fidi〉Mi=1

)
, where

−→
fidi := (〈fidi1 , 1〉 . . . , 〈fidin , 1〉) are file IDs

containing wi
4: for each file fi ∈ F do
5: Split fi into mi chunks of size |B|
6: Bij .DATA← j-th chunk; Bij .pid

$← [2H ] ∀j ∈ [m]
7: for j = 1, . . . ,mi − 1 do
8: Bij .NextID← Bij+1.id
9: Bij .NextPath← Bij+1.pid

10: pmf [Bi1.id]← Bi1.pid
11: B ← B ∪ {Bi1, . . . , Bimi}
12: ODS-DB← BuildORAMTreeko(B)
13: BuildRecursiveORAM(pmf )
14: for each keyword wi ∈ W do
15:

−→
fidi ← IDX[wi]

16: Split
−→
fidi to m′i chunks (ci1, . . . , cim′i) each of size |B′|

17: B′ij .DATA← cij ; B′ij .pid
$← [2H

′
] ∀j ∈ [m′]

18: for j = 1, . . . ,m′i − 1 do
19: B′ij .NextID← B′ij+1.id
20: B′j .NextPath← B′ij+1.pid

21: B′ ← B′ ∪ {B′i1, . . . , B′im′i}
22: ODS-IDX← BuildORAMTreeko(B′)
23: TW[wi]← (Bi1.id, Bi1.pid, |ci1|) for each wi ∈ W

Figure 5.4: Setup algorithm to construct oblivious data structures in POSUP.

We apply the same principle as in the encrypted index construction to build ODS-DB from

DB. Since each file is organized into a linked list, we set B.id = id, where B is the first block in the

list and id is the ID of the file that B represents. Given that the size of IDX is generally smaller

than that of DB, we build ODS-IDX and ODS-DB as two separate oblivious data structures, where

the block size of ODS-IDX is smaller than that of ODS-DB.

POSUP maintains the file position map to keep track of the path of the head block in each

ODS linked list. Note that we can index file IDs with an integer from 1 to N , where N is the

total number of files in DB since POSUP focuses on search and update functionalities on keywords

appearing in DB. This allows us to maintain the file position map via a recursive ORAM in the
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server side. Our design needs to perform only recursive ORAM access to get the path of the starting

block, while the path of other blocks in the linked list is obtained from their predecessor due to

the ODS technique. This reduces the number of recursive calls on the file position map compared

with the direct application of oblivious memory primitives (e.g., [8, 62]) for enabling oblivious query

functionality.

We present the detailed algorithm to construct ODS-IDX and ODS-DB in Figure 5.4. We

encrypt ODS-IDX and ODS-DB with ORAM key ko and store both ODS-IDX and ODS-DB on the

server’s untrusted memory. The stash components required by underlying ORAM schemes are also

encrypted with ko and stored in the server’s untrusted memory. They are loaded and decrypted in

the enclave when needed.

Since search operations require us to clear stale data that might arise due to previous update

operations, we first introduce the oblivious update protocol in POSUP and then describe the oblivious

search.

5.4.3.2 POSUP Oblivious Update Protocol

For simplicity, we assume that the file to be updated (fid) is already present at the client side.

The update operation incurs fid to be added/deleted/modified from EDB, and some keyword-file

pairs to be added/deleted from EIDX. Intuitively, for each keyword (wi) to be updated in fid, the

client requests the enclave to add id along with the update state (add/delete) to an empty data slot

in the head block of the linked list, which represents the search result of wi in EDB. If there is no

available slot, the enclave picks an empty block25 in EDB, adds update information into it and then

links it with the current head block of the linked list by updating its NextID and NextPath values.
25ID of empty blocks can be stored in a separate data structure (e.g., list).
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This strategy results in blocks close to the head of the list containing the latest updated file IDs.

Figure 5.5 outlines the oblivious update protocol with the following details.

The client updates the file content, and forms a list of keywords (w) to be added or deleted

in the updated file (fid) ( 1 ). The client encrypts the update query (q) containing id and w with

Ks and sends it to the enclave. The enclave decrypts q with Ks ( 2 ) and then accesses the entire

keyword position map (TW) to retrieve the block ID (id), path (pid), and current counter (c) of

updated keywords ( 3 ). For each updated keyword (wi), the enclave checks whether there is an

empty slot in the head block of wi in ODS-IDX ( 3 ). If this does not hold, the enclave gets the ID

and the path of an empty block in ODS-IDX ( 5 ) and updates this block as the new head of the

linked list of wi in TW ( 6 ). Notice that POSUP performs all comparison and update operations

in the oblivious manner using ocmp and oupt functions described in §5.4.2 to prevent instructional

leakage. Once the target block is determined, the enclave performs an ORAM access on ODS-IDX to

add fid and the update state (σ) into it ( 7 –11). Specifically, for each updated keyword (wi), the

enclave first executes OReadPath with path pidi ( 7 ) to fetch the block (Bi) of ID idi from ODS-IDX

into the stash (S). Second, it reads Bi from S via OGet ( 8 ) and then adds 〈fid, σ〉 to the block

data (Bi.DATA) ( 9 ). If Bi was previously empty, it updates the pointer of Bi to link it with the

current block head of wi (10). Finally, the enclave performs OEvict to write the updated Bi back to

ODS-IDX (11).

Given the ID (fid) of the updated file (13), the enclave executes recursive ORAM accesses on

the file position map to retrieve the location of fid in ODS-DB (14). The enclave splits the updated

file ffid into several chunks and then executes ODS access on ODS-DB to update the ORAM data

blocks in the linked list of ffid with these chunks (15–17).
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Figure 5.5: POSUP oblivious update protocol.
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We can see that the deletion in POSUP does not actually delete some real data in ODS-IDX

but instead performs addition with the state bit (σ = 0). This lazy deletion enables the efficient

update, which only requires O(1) access on the encrypted index compared with O(r) in the actual

deletion due to the search, where r is the number of files in which the updated keyword appears.

The price to pay for this efficiency is the cost of increasing the actual size of the search index and the

search complexity. To mitigate this impact, after k (system parameter) successive updates, POSUP

performs a dummy search on the most frequently updated keyword to do garbage collection, since

the search operation in POSUP will clear stale data appearing in blocks toward the tail of the linked

list, as described in the next section.

5.4.3.3 POSUP Oblivious Search Protocol

Figure 5.6 presents the oblivious search protocol in POSUP. First, the client executes the

remote attestation protocol with the enclave to establish a secure communication channel with a

session key (Ks). The client then encrypts the search query of the form q = w1 ?1 . . . ?m−1 wm with

Ks, where ?i ∈ {∨,∧} ( 1 ) and sends it to the enclave. The enclave decrypts q with Ks to obtain

the list of searched keywords (wi) and performs the following operations.

The enclave scans TW entirely to get the block ID (idi) and its path (pidi) in the index

(ODS-IDX) of each wi ( 2 ).

For each 〈idi, pidi〉 pair, the enclave performs an ODS access on ODS-IDX (containing multiple

ORAM accesses) to retrieve all blocks in the linked list, all of which form the entire list of file IDs

(Ri) matching wi ( 3 –11). According to our update strategy (see §5.4.3.2), blocks toward the head

of the oblivious linked list will contain file IDs with the most up-to-date update state. Hence, during

the block update operation ( 5 ), the enclave will clear stale file IDs in the accessed block if they are
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Figure 5.6: POSUP search protocol.

already present in Ri, or their most recent update status is “delete.” Once the block becomes empty

(meaning it does not contain any file IDs left), the enclave will store its ID in the empty list in TWso

that it can be re-used later in the update operation. After the block is accessed with ORAM, the
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enclave determines if it links with another block via ocmp ( 8 ). If this holds, the enclave gets the

next block information ( 9 ) and continues the oblivious access as above. Otherwise, it processes the

next searched keyword (10).

Note that we perform all these conditional checks and processing in an oblivious manner

via ocmp and oupt functions. This prevents POSUP from leaking the information regarding size of

individual searched keywords (11) but only the total amount of data that are processed due to the

search query.

After the file IDs (stored in Ri) of each keyword wi are retrieved, the enclave performs

union/intersection on Ri according to ?i to get the final list of file IDs matching q (12)26. For each

block id′i in the joint list, the enclave performs recursive ORAM access (13) on the file position map

structure to retrieve the corresponding path pid′i of id′ in ODS-DB (14).

The enclave performs a sequence of ODS accesses on ODS-DB with the same logic as ODS-IDX

accesses to retrieve the file content of each id′i (15–16). Finally, the enclave encrypts all the retrieved

files with the session key Ks (17), and sends them to the client for decryption (18).

5.4.4 Extension to Multi-User Setting

In POSUP, the client is stateless. Thus, it is easy to extend POSUP into the multi-user

setting including a data owner (who owns n outsourced files), a storage server, and k users (who

want to search/update on n files) as follows. The data owner creates an access control data structure

(ACDS) to grant permission (e.g., search/update) for k users on n files. The data owner encrypts and

sends ACDS to the enclave, along with the encrypted index (ODS-DB) and encrypted files (ODS-DB)
26Since the file ID (fid) is assigned to the ID (id) of the head block in the linked list, we use fid and id interchangeably.
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that are constructed, as described in §5.4.3.1, all of which are stored in the server’s untrusted memory

(e.g., SSD).

Given that a user wants to search for a keyword, he/she will authenticate with the enclave

using, for example, the user identifier and password. If authenticated, the enclave performs oblivious

access on ODS-IDX (as described in §5.4.3.3) to obtain file IDs matching the query. For each file ID,

the enclave accesses ACDS with ORAM to check whether the user has the read permission on the

file. If so, the enclave performs oblivious access on ODS-DB to retrieve the file and sends it to the

user. The same principle applies to the file update procedure. Roughly speaking, the enclave first

authenticates the user and then obliviously accesses ACDS to check whether the user has the update

permission on the file. If permitted, the enclave executes the oblivious update protocol as presented

in §5.4.3.2.

5.4.5 Security Analysis

We design and build POSUP by using ODS and ORAM, and therefore, its security is inherited

from the security of these tools. Specifically, these tools guarantee that POSUP hides all access

patterns on ODS-IDX and ODS-DB, given that they have the same length as in Definition 5.

In POSUP, we can observe from Figure 5.5 and Figure 5.6 that search and update operations

incur the same oblivious access procedures on encrypted data structures. In particular, given a

search/update query, the enclave first performs (i) access on the entire keyword hash table and then,

(ii) ODS access(es) on ODS-IDX, followed by (iii) recursive ORAM access(es) on the file position

map, and finally (iv) ODS access(es) on ODS-DB. In the update protocol, add and delete operations

also invoke the same oblivious access procedure, where they differ from each other only in terms

of the state bit value (σ), which is encrypted in the view of the attacker. Hence, in general, any
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search/update queries that are of the same size and incur the same number of (recursive) ORAM

and ODS accesses are indistinguishable.

Since ORAM and our linked list ODS do not hide the number of oblivious accesses,

POSUP might leak the size of the query, which can allow the attacker to distinguish access patterns,

thereby learning information about the query. The size information can be inferred in several points

when the enclave performs oblivious operations as follows. In the search protocol (Figure 5.6), the

size can be learned by an attacker from (i) the search query ( 1 ); (ii) the number of accesses on

the keyword hash table ( 2 ) and the encrypted index (11,12); (iii) the number of recursive ORAM

accesses on the file position map (13,14) and encrypted files (16); (iv) and the result returned to the

client (17). Similarly, in the update protocol (Figure 5.5), the size can be leaked from the update

query ( 1 , 2 ), or the number of accesses on encrypted data structures (12,17).

To mitigate the impact of size leakage, we can apply padding to all aforementioned positions.

For instance, for the query that requires less than n′ total ORAM accesses, one can add dummy

ORAM accesses on both ODS-IDX and ODS-DB, and dummy recursive ORAM accesses on the file

position map to quantize the total number to be n′, thus making the query size indistinguishable

by the attacker. We can further apply padding to obfuscate the actual size of the search/update

query as well as the size of (search) results being sent from the enclave to the client at the end of

the protocol. However, we notice that such padding strategies are generally application-specific,

which fully depends on the characteristics of a particular dataset and user preferences, and also

might incur heavy bandwidth and processing overhead as the trade-off. This is because padding will

increase the cost of oblivious operations less than n′ (suppose the number of required operations is

n) to be equal to that of n′ actual operations (where n′ > n ). We refer the reader to Ryoan [98] for
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its parts of data-oblivious communication as well as quantizing processing time to learn more on

how the size quantization by padding can thwart such a side channel attack.

Although the enclave of Intel SGX provides security guarantees such as data confidentiality

and integrity against direct memory access attacks, it is not free from side-channel attacks. POSUP

does not aim to defeat all sorts of side-channel attacks, which seems to be a very difficult task; instead,

we try to build POSUP as a best-effort approach to make it secure against known side-channel

attacks. The use of recursive ORAM and ODS in POSUP naturally defeats side-channel attacks

on data access patterns such as cache side-channel attacks [30, 78, 83]. Employing oblivious data

comparison (ocmp) and oblivious data assignment (oupt) in POSUP (see §5.4.2) defeats attacks on

the control-flow side channel [31, 122, 187] because these primitives eliminate conditional branches

on processing secrets. Therefore, such attacks cannot measure a difference in control-flow for different

secrets.

5.4.6 Experimental Evaluation

5.4.6.1 Implementation

We implemented POSUP with C/C++ using the Intel SGX SDK v1.7. Our implementation

contains a total of around 4.9K lines of code for trusted and untrusted modules. For crypto-

graphic operations inside the enclave, we leveraged Intel SGX SDK library functions including

sgx_aes_ctr_encrypt for encrypting ORAM with AES-CTR mode and sgx_read_rand for pseudo-

random number generation. We implemented Path-ORAM and Circuit-ORAM controllers in an

enclave to execute ODS access on ODS-DB and ODS-IDX. As mentioned in §5.4.3, our platform

stores ORAM stashes encrypted in the untrusted memory (RAM/SSD), and they are loaded into

the enclave when needed.
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We describe our configuration and evaluation methodology, followed by the main experimental

results.

5.4.6.2 Configuration and Methodology

We evaluated the performance of our system on a commodity HP Desktop, which supports

Intel SGX and is equipped with Intel E3-1230 v5 @ 3.4 GHz CPU, 16GB RAM and 512GB SSD.

Our dataset is the full Wikipedia English corpus enwiki v.20180120. To extract text data

from the corpus, we used WikiExtractor [11] Python script and extracted 5,554,594 distinct text-only

articles (i.e., files in our term) from enwiki. To collect the keywords for the search, we implemented

a standard tokenization method to extract unique alphabetical and non-alphabetical keywords from

the dataset. The total number of unique keywords in the dataset is 7,075,917 and the total number

of keyword-file pairs is 863,782,383. The total size of the database (DB) is 27 GB (on the disk), and

the total size of the search index (IDX) is 6.9 GB. Figure 5.7 presents the size distribution of text

articles in the enwiki dataset.

To assume a general use case of a mobile client and a cloud server, we use Wi-Fi as the

communication channel between the client and the server and then mimic the bandwidth and latency

of using Amazon EC2 from our lab. The average network latency and transmission throughput are

18 ms and 150 Mbps, respectively.

We compare POSUP with the implementation of existing designs, namely ORAM-SE and

EntireSGX. The following represents the configuration of each implementation and how we compare

each with POSUP.
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Figure 5.7: File size distribution in enwiki dataset in CDF.

• POSUP: We constructed ODS-IDX and ODS-DB with ORAM tree structures with 24 and 23

levels, respectively, to store the entire files (7,075,917 ≤ 223). Because more than 50% of files in

our dataset are smaller than 3KB (shown in Figure 5.7), we selected the block size of ODS-DB

to be 3KB to balance the efficiency and storage overhead. Likewise, we selected the block size of

ODS-IDX to be 512B, because the majority of search keywords appears in less than 512 files (see

Figure 5.8c). We represent a file identifier with a 4-byte integer. This results in ODS-IDX being

obliviously accessed up to four times for most search cases. We set the stash size of both ORAM

schemes as 80 to achieve negligible overflow probability [169, 179].

• ORAM-ODS-SE – Direct ORAM-SE composition in a traditional client-server model (without

secure hardware): In this setting, we used the same configuration as in POSUP, where we integrate

ODS into the ORAM-SE composition for fair comparison with POSUP. We also set the size

of ODS-IDX and ODS-DB to be identical to POSUP. ORAM-ODS-SE differs from POSUP in

terms of the ORAM communication channel (over network vs. local bus) and the keyword

position map location (client vs. server). For the ORAM scheme, we employed Path-ORAM for
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ORAM-ODS-SE because it requires less access to ORAM, so it is more efficient than Circuit-ORAM

in the conventional client-server network setting. For the evaluation, we measured all delays

when a client is accessing ODS and recursive ORAM on ODS-IDX and ODS-DB stored on the

Amazon EC2 with the above network throughput and latency (18 ms and 150 Mbps). Note that

our analysis is conservative, because we tend not to take into account the impact of side factors

(e.g., disk I/O).

• EntireSGX – Processing the entire outsourced data in Intel SGX: We measured the search delay

by decrypting the entire EIDX and EDB inside the enclave. We used the maximum heap size

(i.e., 95 MB) allowed to the enclave to subsequently decrypt EIDX and EDB to maximize its

performance. In other words, EIDX and EDB are loaded and processed (decrypt/encrypt) in

95 MB chunks sequentially inside the enclave. For the update cost, we measured the delay of

decryption and re-encryption of the entire EIDX and EDB inside the enclave. Notice that in

POSUP, we selected the size of ODS-IDX and ODS-DB that have sufficient empty spaces for later

addition of the same amount of dataset size in the setup phase (i.e., 27GB file with 6.9GB index).

Hence, we double the size of EIDX and EDB in EntireSGX to assume it can also support addition,

similar to POSUP, for fair comparison between two techniques.

5.4.6.3 Micro Benchmark

We first conducted a micro benchmark of POSUP to investigate the delay of performing a

single recursive ORAM and ODS access. Three factors cause delay in each operation: (i) the time to

read/write ORAM data from the hard disk to the memory and vice versa (i.e., I/O access); (ii) the

time for an enclave to secure ORAM operations, such as applying encryption and decryption on the

data (i.e., encryption overhead); (iii) the amount of data to be processed in each ODS operation on
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Table 5.1: Micro-benchmark of POSUP.

Operation Execution Time (µs)
Path-ORAM Circuit-ORAM

ODS access on ODS-IDX
I/O Access 134 144
Enclave Process 2,362 686
Total 2,496 830

ODS access on ODS-DB
I/O Access 156 285
Enclave Process 3,909 746
Total 4,065 1,031

Recursive ORAM on file position map
I/O Access 34 41
Enclave Process 13,246 4,631
Total 13,280 4,672

ODS-IDX and ODS-DB, expressed as

DODS = H · |B|·Z · k, (5.1)

where H and |B| are the height and block size of ODS-IDX (or ODS-DB), respectively; and (Z, k) =

(4, 2) are the bucket size and the number of read/write operations in Path-ORAM, respectively.

When Circuit-ORAM is used, (Z, k) = (2, 5). The amount of data (in bytes) to be processed for

each recursive ORAM on the file position map pmf is:

Dpmf
=

l∑

i=1

(
|B|·Z · k ·

(
log2

(N
Ri

)
+ 1
))
, (5.2)

where N is the total number of files, R = |B|/4 is the compression ratio (assume that a path ID is

represented by 4 bytes) and l = blogRNc.

Table 5.1 presents the execution time of each ODS access on ODS-IDX and ODS-DB and

recursive ORAM on pmf in our current configuration. Note that the performance changes for the

different parameter configurations (e.g., for a different H, |B|, Z, or k) according to Equation 5.1

and Equation 5.2.

259



www.manaraa.com

The I/O access in POSUP is efficient because we implemented the caching technique proposed

in [127], where we cache the first K levels of the ORAM tree structures on the RAM. In this experi-

ment, we used 4 GB of memory to cache 2/3 levels of both ODS-IDX and ODS-DB, which significantly

reduced I/O delay from 520-767µs to ≤285µs. Compared to Path-ORAM, Circuit-ORAM incurs

1.25× more I/O access, and therefore, its I/O latency is slightly higher than that of Path-ORAM.

Because the recursive ORAM structure of the file position map is small (i.e., ≈0.2 GB), we store the

entire map directly on the RAM. This results in its I/O access delay being negligible (i.e., ≤41 µs).

Processing data in the enclave has more effect on the access delay than I/O access because it

handles encryption and decryption when reading data from ORAM. Another point that we observed

from Table 5.1 is that the cost of executing the Path-ORAM controller in the enclave is much higher

than that of Circuit-ORAM because its read/eviction is more aggressive. Specifically, when using

Path-ORAM controller, the enclave must perform O(logN) · |S| number of encryptions/decryptions,

where |S|= 80 is the stash size. In contrast, using the Circuit-ORAM controller requires O(logN)+|S|

number of encryptions/decryptions. Therefore, our benchmarked result has shown that integrating

Path-ORAM with secure hardware is much less efficient than Circuit-ORAM due to the multiplied

factor |S|, which is 80. The processing delay of recursive ORAM is high because this requires the

enclave to perform additional ORAM encryptions and decryptions on O(logN) recursion levels.

Table 5.1 also illustrates that it takes 830 µs to obliviously access a 512B block in ODS-IDX

with Circuit-ORAM. That is, the latencies of performing single-keyword searches on ODS-IDX in

many cases are likely similar to each other, and they are mostly dominated by the number of files

to be returned. We now illustrate the formula for calculating the number of ODS and recursive

ORAM accesses incurred in each search and update query. Given a search query q with n keywords

wi, let mi and m′ be the number of files matching wi and the final q, respectively. The search q on
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POSUP incurs
∑n

i=1 dmi|B|e accesses on ODS-IDX plus m′ recursive ORAM accesses on pmf and plus

∑m′

i=1 d
|fi|
|B′|e accesses on ODS-DB, where B,B′ are block sizes of ODS-IDX and ODS-DB, respectively,

and |fi| is the size of file fi in m′ files. Given an updated file f with m updated keywords in it,

the cost is m accesses on ODS-IDX plus one recursive ORAM access on pmf plus d |f ||B|e accesses on

ODS-DB.

Because the delay in I/O access and encryption in an enclave is stable (i.e., does not change

between accesses), our measurement of the actual search and update delay in POSUP respected the

above formulas and the micro benchmark in Table 5.1. Moreover, as explained in §5.4.3.1, each

search/update operation in POSUP additionally incurs one-time decryption and re-encryption of the

entire keyword hash table (TW), which costs 210 ms for 188 MB-sized TW constructed from the

enwiki dataset.

In the following, we present actual benchmarked delay for search and update operations to

showcase the efficiency of our system compared with other techniques.

5.4.6.4 Search Delay

Figure 5.8a presents the end-to-end delay of processing a keyword search query in POSUP,

compared with ORAM-ODS-SE and EntireSGX techniques. POSUP (the blue line) is hundreds of

times faster than ORAM-ODS-SE (the purple line) for any search query being performed. This

is mainly because POSUP performs ORAM-controlling operations in an enclave, so it does not

incur significant network communication overhead like ORAM-ODS-SE, as shown in Figure 5.8b;

instead, the enclave reads a large amount of data from the memory, which is faster and cheaper than

accessing over the network. ORAM-ODS-SE incurs overhead not only in bandwidth (i.e., 100× more

than POSUP) but also in generating a large number of network round-trips (i.e., 1000× more than
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Figure 5.8: Detailed search delay of POSUP and its counterparts.

POSUP) due to multiple rounds incurred in the recursive ORAM and ODS operations. This is the

main bottleneck of ORAM-ODS-SE, given that the network latency is hard to improve in practice.

When compared with EntireSGX, POSUP is one to two orders of magnitude faster than

EntireSGX for more than 99.5% of keywords that can be searched. In Figure 5.8a, when searching

keywords that returns ≤ 212 files, POSUP is more efficient than EntireSGX. Figure 5.8c presents

the (accumulative) keyword distribution on enwiki. The Zipf’s law distribution [141] shown in

Figure 5.8c indicates that the cases returning ≤ 212 files are the majority (99.5%), and this indicates

that POSUP is more efficient than EntireSGX for a large fraction of keywords in practice. This is
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because the enclave in POSUP only works with a small amount of data per ORAM access, while

EntireSGX works with the entire index and dataset as its working set, as presented in Figure 5.8d.

For a small fraction of keywords (< 0.5%), the end-to-end delay of POSUP is slower than that of

EntireSGX.This is because a large number of ORAM and ODS accesses on ODS-IDX and ODS-DB

require data processing in enclave more than processing the entire dataset. The cost of executing

Path-ORAM and Circuit-ORAM in POSUP is C · r · 8 log2(N) and C · r · 10 log2N , respectively,

where r is the number of file blocks matched with the search query, N = 223 is the total number of

file blocks in ODS-DB, and C is a constant factor. This formula implies that if r ≥ N
C·k·log2N

, where

k ∈ {8, 10}, then processing the entire database in the enclave is better than performing ORAM.

Our benchmark result in Figure 5.8a respects this formula. Theoretically, POSUP should incur more

memory accesses than accessing the entire memory when it processes more than 215 files. The graph

shows that overhead start to become significant when 213 files are returned, we can assume the

constant C as 4, and then POSUP processes more than N
4·k·log2N

file blocks in the enclave.

Padding so that a search query has the same size as another query will result in a total

delay of two queries becoming similar. For example, padding on one-file-involved queries to make

their size the same to four-file-involved queries incurs 46% extra delay (239ms) compared with the

non-padding case.

5.4.6.5 Update Delay

We selected the file with the largest size (i.e., 290KB) in enwiki and performed the update

benchmark on that file for a different number of unique keywords that can be updated (add/delete)

in it. Figure 5.9 presents the end-to-end update delay of POSUP and its counterparts. POSUP is

one order of magnitude faster (40×) than ORAM-ODS-SE because it does not increase bandwidth
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Figure 5.9: End-to-end update delay of POSUP with a 290KB file size.

and round-trip overhead, as analyzed above. POSUP with Circuit-ORAM produces the highest

throughput so that it achieves the lowest update delay among its counterparts. POSUP is up to

3, 300× faster than EntireSGX due to the inevitable overhead in I/O writing required by the design

of EntireSGX. An update in EntireSGX requires re-encrypting the entire data and write them back to

the disk. Therefore, the update delay of POSUP is three orders of magnitude faster than EntireSGX.

5.4.6.6 Storage Overhead

The server storage of EntireSGX is more efficient than POSUP and ORAM-ODS-SE. This

is because, in POSUP and ORAM-ODS-SE, IDX and EDB are arranged as tree-ORAM structures,

which incur a constant (e.g., 1.5×-2×) size blowup. Specifically, the total server storage of POSUP is

|TW|+|ODS-IDX|+|ODS-DB|+|pmf |= 0.19+34+97+0.19 ≈ 131GB if POSUP uses Circuit-ORAM.

The corresponding overhead is 0.19+68+194+0.38 ≈ 262GB if POSUP uses Path-ORAM. Note that

some capacity of the ORAM structure is reserved to enable oblivious update (e.g., addition/deletion).

Therefore, our server storage overhead presented above can allow the further addition of 3× more

IDX and DB to what being used in this experiment.
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5.5 MOSE: Multi-User Oblivious Storage Platform

We design a multi-user oblivious storage system called MOSE, which employs secure enclave

to drastically reduce network overhead, support security functionalities against active adversaries,

and exploit parallelism in the server at once. In particular, we first develop the trusted logics (similar

to the trusted proxy) on an untrusted server (i.e., not on the network) by adopting a commodity

secure enclave (SGX) as a secure isolation mechanism. This design is inspired by recent systems and

frameworks assisted by SGX (e.g., [8, 55, 60, 66, 91, 142, 159]), which employ a commodity secure

hardware to enhance the efficiency of the underlying cryptographic operations. We are motivated by

these approaches to overcome network bandwidth limitations of the previous proxy-assisted ORAM

systems.

MOSE offers the following desirable properties.

• Minimal network bandwidth overhead: MOSE removes network-related problems in existing proxy-

assisted oblivious storage systems by putting the trusted logic on an enclave. In this setting, the

enclave communicates with the storage server via a local memory bus, which is several orders

of magnitude faster than the network communication in terms of both bandwidth and latency.

This design does not incur network bandwidth overhead because MOSE will transfer only the

encrypted, bulk data over the network.

• Access control enforcement against active adversary: MOSE, running in a secure enclave, securely

enforces access control policies and hides the access patterns against an active adversary corrupting

the users and/or all components of the server except for the CPU. To this end, we define a

security notion for enclave-assisted multi-user ORAM with access control in the presence of an

active adversary. We show that MOSE achieves the security according to this model (see §5.5.4).
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• Scalable to multi-user concurrent access: MOSE achieves a scalable performance by utilizing a

parallel optimization, which achieves maximum concurrency at the server while preserving the

ORAM security. In particular, MOSE is scalable proportional to the available system resources,

e.g., the number of CPU cores in the server. These properties allow MOSE to achieve a high

throughput in serving a large number of concurrent requests from multiple users.

• Implementation and experimental evaluations: We implemented MOSE and evaluated its perfor-

mance on a commodity desktop that supports SGX, and the experimental result indicated that

our system is efficient and practical (see §5.5.5). For example, with 96 GB database, MOSE can

process 374 concurrent requests while achieving less than one second delay to all requests, and it

can process 788 concurrent requests while achieving, on average, one second delay per request.

MOSE is two orders of magnitudes faster than the state-of-the-art [158] and thus more suitable in

serving multi-users requests. Specifically, MOSE can support more than 300 concurrent users with

a reasonable delay for accessing 96 GB database, compared with 10 users on 13 GB database in

TaoStore with 1 Gbps network bandwidth. To achieve these, MOSE incurs 10 GB of additional

memory usage and doubles the storage overhead.

Based on these results, we believe that MOSE fills an important practical gap between

security and performance, and facilitates secure data outsourcing in practice.

5.5.1 High-Level Architecture

At a high level, MOSE is an outsourced oblivious storage in an untrusted cloud server with a

trusted proxy that handles user’s requests. MOSE runs its trusted logic such as user authentication,

en/decryption, and the ORAM controller logic in the enclave Unlike previous approaches that put

the trusted proxy in a physically separated server on the network, MOSE utilizes hardware-based

266



www.manaraa.com

isolation provided by SGX and can guarantee a comparable grade of security to such approaches. To

make an access request to MOSE, a user must be authenticated by the enclave logic and also pass

the access control checking. After that, the enclave will perform oblivious access to the encrypted

database stored in untrusted storage. The trusted logic will decrypt the content, and finally, the

result will be returned to the user. Note that the communication between the user and the enclave

is encrypted by the secret key shared by the remote attestation protocol provided by SGX.

On the other hand, the storage is untrusted, thereby the database and the access control

structure must be encrypted. This proxy construction ensures three security requirements for

data outsourcing. First, the ORAM access from trusted proxy can guarantee the access pattern

obliviousness if our secure enclave does not leak any critical data via side-channel analysis. Second,

to guarantee security, MOSE blocks control-flow side channel via secure (non-branch) comparison

and assignment logic and blocks cache side-channel by accessing the entire data for critical ORAM

components such as requested paths and the stash. Third, for access control and resiliency, MOSE

implements access control logic in the trusted enclave and uses ORAM to obliviously check the

permission, so even when a malicious user colludes with the server, they cannot infer any information

about the honest user(s).

Regarding the performance, MOSE achieves the two following design requirements. First, by

having a trusted proxy in a secure enclave, MOSE eliminates efficiency issues related to network

bandwidth/latency applied between the proxy and the storage server. Instead of communicating

via a network link, the trusted proxy of MOSE uses memory bus, which is two orders of magnitude

faster (273 Gbps vs. 1 Gbps) in bandwidth and much faster (350 ns vs. ≈ 50 ms) in latency. This

design unleashes the bottleneck in serving concurrent requests as in TaoStore [158], which can only

support ten users for achieving their optimal performance.
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Second, MOSE offers scalable performance for supporting multi-user access by speeding up a

single ORAM access via parallelization while processing the entire user access requests sequentially.

Unlike previous works aiming at parallelizing multiple ORAM access in a concurrent manner,

this construction makes MOSE free from the asynchronicity attack. In particular, MOSE applies

parallelization to a single ORAM access request regarding encryption and decryption computations,

and I/O access. MOSE splits each block in ORAM structures into m chunks, where m is the number

of parallel threads. When processing an access request, each thread processes the reading of each

chunk from the storage as well as cryptographic computation in parallel. Thanks to this parallel

construction, MOSE’s performance increases in proportion to the number of parallel threads, and

therefore, it is scalable.

5.5.2 System and Threat Models

5.5.2.1 System Model

Our system is comprised of a data owner, k users, and an untrusted storage server S equipped

with SGX. The data owner owns a database (DB) containing N blocks and grants permissions such

as read (R), read&write (RW) for k users to access N blocks via an access control data structure

(ACDS). Only the data owner can update ACDS entries. The data owner encrypts DB and ACDS

forming EDB and EAC, respectively, both of which are stored in the untrusted memory region of

S such as solid-state drive (SSD). To access an entry in DB/ACDS, the users/data owner interacts

with an enclave created by SGX, which acts as a trusted proxy to execute ORAM operations with S.

For the sake of simplicity, we say accessing S to imply accessing the untrusted memory region

in S. We consider the enclave as the ORAM client (OClient) in our models because it is the only

entity that executes the ORAM protocol with S.
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Inspired by [129, 158], we present the definition of multi-user ORAM with trusted proxy

in Definition 17. Our model differs from the ones in [129] and [158] in the sense that the former

does not use proxy while the latter does not consider the access control enforcement. We denote

the execution of protocol A by OClient with the server S as (−→o C ;−→o S)← A(
−→
i C ;
−→
i S), where the

input/output vectors of two parties are separated by a semicolon (;).

Definition 17 (Enclave-assisted multi-user ORAM with access control). A multi-user ORAM with

access control is comprised of the following (interactive) PPT algorithms:

• (ko,EDB,EAC)← Gen(1λ,DB, k,N): It takes as input a security parameter λ, and a database DB

containing N data blocks. It initializes a data structure ACDS managing the access policy of k

users for N blocks. It returns EDB and EAC as the encrypted form of DB and ACDS, respectively.

• (p;⊥) ← ReadAC(uid, id; EAC): It takes a user ID uid and a block ID id from OClient and EAC

from S as input. It reads the permission on EAC for entries idand uidas p ← EAC(uid, id). It

outputs a permission p ∈ {R,RW,⊥} to OClient and ⊥ to S.

• (p; EAC′)←WriteAC(uid, id, p; EAC): It takes (uid, id, p) from OClient, where p ∈ {R,W,RW,⊥}

and EAC from S as input. It updates as EAC(uid, id) ← p. It outputs p to OClient, and the

updated EAC′ to S.

• (data;⊥)← ReadDB(uid, id; EAC,EDB): It takes (uid, id) from OClient and (EAC,EDB) from S as

input. It executes (p;⊥)← ReadAC(uid, id; EAC). If p /∈ {R,RW}, it gets data← EDB[i], where i

is a dummy block ID. Otherwise, it gets data← EDB[id]. Finally, it returns data to OClient and

⊥ to S.

• (data; EDB′) ← WriteDB(uid, id, data∗; EAC,EDB): It takes (uid, id, data∗) from OClient, where

data∗ is the new data to be written, and (EDB,EAC) from S as input. It executes (p,⊥) ←
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ReadAC(uid, id; EAC). If p 6= RW, it gets data← EDB[i], where i is an dummy block ID. Otherwise,

it gets data← EDB[id], and updates EDB[id]← data∗. It returns data to OClient, and EDB′ to S

indicating EDB is (possibly) updated.

• data′ ← Response(Ks, data): It encrypts data with key Ks.

5.5.2.2 Threat Model

We build MOSE based on following assumptions as its threat model.

We trust the data owner, OClient and the ORAM controller logic, both of which run by the

enclave. We trust the remote attestation protocol by SGX, on which we rely on for verifying the

integrity of the enclave and establishing a secure communication channel between the user and the

enclave. We also trust the hardware key generated by the enclave that seals the ORAM key.

We assume that the server S is completely untrusted except the enclave. We assume attackers

on the server can freely monitor access patterns of the users and the enclave such as network access,

storage and memory access; however, they cannot compromise data confidentiality for such accesses.

We do not trust any of server’s logic that includes virtual machine monitor, operating system and

drivers, software that manages storage, etc. This is a general assumption for a system that utilizes

secure enclaves because SGX isolates and applies encryption to the enclave’s memory space via

hardware mechanisms. Additionally, data users and the server can also be active adversaries, meaning

that they may attempt to inject/tamper their input or even collude with each other to break the

security of other honest users.
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5.5.3 Design of MOSE

5.5.3.1 System Initialization

Figure 5.10 presents the initialization workflow of MOSE. Given a database DB containing

(upto) N block entries being shared among (upto) k users (uid1, . . . , uidk), the data owner executes

the Gen algorithm to construct mandatory data structures outsourced to the cloud (Step 1 ). The

algorithms first generates an ORAM symmetric key ko and initializes an access control matrix

ACDS (see §5.5.3.3 for our argument on why matrix structure is preferred) for each user uidi with

each database entry idj . For simplicity, we consider basic permission attributes including read and

write. DB and ACDS are then packaged and encrypted into two separate recursive Circuit-ORAM

structures called EDB and EAC, respectively. Figure 5.11 presents the Gen algorithm, which executes

Circuit-ORAM setup algorithm to construct recursive Circuit-ORAM structures for the database

and the access control structure. After the algorithm is executed, the data owner sends EAC and

EDB as well as their encrypted position map (all in the form of Circuit-ORAM trees) to the server,

all of which are stored in the untrusted memory region (e.g., SSD, at Step 2 ). The data owner

performs a remote attestation of an enclave (provided by SGX) running on the server to ensure if

the enclave is intact and to exchange cryptographic key for establishing an encrypted communication

channel between the data owner and the enclave. To this end, the data owner sends ko to the enclave

via the established channel (Step 3 ). To ensure security, the enclave always keeps ko in the trusted

memory, and stores it to the disk only after encrypting it with the enclave’s hardware key (i.e., data

sealing feature provided by SGX).
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Figure 5.10: MOSE initialization.

MOSE.Gen(λ,DB, k,N):

1: ko ← E .Gen(1λ) and initialize k ×N matrix ACDS
2: EDB← Circuit-ORAM.Setup(ko,DB)
3: ACDS[uid, id]← {R,RW,⊥} for 1 ≤ id ≤ N and 1 ≤ uid ≤ k
4: ACDS′ ← Split ACDS into N ′ blocks each of size |B′| bits
5: EAC← Circuit-ORAM.Setup(ko,ACDS′)
6: return (ko,EDB,EAC)

Figure 5.11: Setting up EAC and EDB components in MOSE.

In MOSE, we employ authenticated encryption technique (i.e., AES-CTR for encryption and

HMAC with SHA-256 for authentication) to achieve the integrity for each node in the Circuit-ORAM

structures against a malicious adversary.

5.5.3.2 Handling User Request with Access Control

Figure 5.12 illustrates the workflow of MOSE in processing the user request with the access

control check. Let id be the ID of the block in EDB the user uid wants to access. The user will first

establish a secure channel (via a shared key Ks) with the enclave via remote attestation. The user

encrypts the 4-tuple (uid, pwd, id, op) with the shared key Ks where pwd is user’s authentication

password and op denotes the access type (e.g., op ∈ {read/write}), and then sends the encrypted
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Figure 5.12: Oblivious access workflow in MOSE.

MOSE.AccessDB(uid, id, op, b∗):

1: id′ ← (2N · uid + id)/|b′| # N: # DB blocks, |B′|: AC block size

2: b′ ← Circuit-ORAM.Access
(

read, id′,⊥; EAC
)

3: perm← Get the permission of user uid on id from b′

4: v ← ocmp(op, perm) # Check if op = perm

5: did
$← {1, . . . , N}

6: id← oupt(v, id, did); b∗ ← oupt(v, b∗, {0}|b
∗|)

7: b← Circuit-ORAM.Access
(

op, id, b∗; EDB
)

8: b← oupt(v, b, {0}|B|)
9: b′ ← E .EncKs(b)
10: return b′ # Send b′ to uid

Figure 5.13: Processing user request in MOSE.

request to the storage server, which passes it into the enclave (Step 1 ). The enclave decrypts

the tuple (uid, pwd, id,op) using Ks, and authenticates the user with the uid and password pwd.

If authenticated, it derives the ID id′ of a block in EAC containing the permission of uid with id.

The enclave performs recursive Circuit-ORAM accesses on the position map component of EAC

to retrieve the path location (pid′) of id′ in EAC (Step 2 ). After that, the enclave performs a
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Circuit-ORAM access on EAC to retrieve the block id′ from the path pid′ (Step 3 ), and checks

whether op is permitted (i.e., op ∈ id′) or not (Step 4 ). If op ∈ id′, the enclave performs recursive

Circuit-ORAM accesses on the position map component of EDB to retrieve the path location of

id (Step 5 ), and then executes a Circuit-ORAM access on EDB to retrieve the requested block id

from the path (Step 6 ). Otherwise, if op /∈ id′, the enclave performs dummy (recursive) accesses

on both EDB’s position map and EDB. Such dummy accesses are necessary in order to prevent the

server from learning whether the user request is permitted or not. Finally, the enclave encrypts the

accessed block (or dummy data if uid is not permitted) with Ks, and then sends the encrypted data

to the user (Step 7 ).

Figure 5.13 presents how our enclave processes the access request algorithmically after the

user is authenticated. The algorithm invokes the recursive Circuit-ORAM protocol (steps 2, 7 ).

Generally speaking, the enclave needs to perform a conditional check to verify whether the user

has permission or not (step step 4) and also require a check when the enclave obliviously accesses

the database block from the path of the Circuit-ORAM tree. To prevent information leakage from

diverging execution on a conditional branch, we implemented the oblivious comparison and oblivious

update functions using CMOV and SETE instructions proposed in [142, 149] defined as follows.

• b← ocmp(x, y): It takes as input two values x, y and outputs b← 0 if x = y or b← 1 otherwise.

• z ← oupt(b, x, y): It takes as input two values x, y and a boolean b, and assigns z ← x if b = 1 or

z ← y otherwise.

Notice that read and write operations (i.e., ReadDB and WriteDB algorithms in Definition 17)

must incur the same procedure presented in Figure 5.13 to achieve security. To be complete,

Figure 5.14 presents the detailed WriteAC algorithm defined in Definition 17. Notice that this process
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MOSE.WriteAC(uid, id, p):
1: id′ ← (2N · uid + id)/|b′| # N: # DB blocks, |B′|: AC block size
2: b′ ← Circuit-ORAM.Access(write, id′, p; EAC)

Figure 5.14: User permission update in MOSE.

can only be triggered by the data owner, and the enclave executes this algorithm only after the data

owner is authenticated.

5.5.3.3 Towards Scalable Oblivious Access

To achieve a scalable performance, we optimize each Circuit-ORAM access on encrypted data

components stored in the untrusted memory via secure enclaves and parallelization of computation

and I/O accesses. As briefly discussed in §5.5.1, the state-of-the-art proxy-based oblivious storage

design (TaoStore [158]) pointed out the concurrency limitation of ORAM. That is, any optimization

that parallelizes multiple ORAM access must reply such requests sequentially in their arrival order

to prevent information leakages via their timings. Although multiple user’s requests can arrive and

be processed at the proxy simultaneously, the total response time for a user is equal to the total

processing time of its prior requests plus the processing time for the target request, which includes

local proxy computation and ORAM network communication delay.

Holding the restriction that all requests have to be replied in a sequential order to ensure

security, the only solution to optimize MOSE’s performance is to employ parallelization tricks, not

for the concurrent ORAM access, but for minimizing the processing time of a single request. With

this approach, we can minimize the delay of processing one user request at a time and also make

MOSE scalable by increasing its concurrent request processing performance in proportional to the

number of available CPU cores.
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Another bottleneck that limits the support of concurrent requests is the network bandwidth

overhead. The 1Gbps link between the proxy and the storage server only allows ten concurrent

access requests in a second, and this number cannot reflect concurrency needs in real-world scenarios.

Thanks to MOSE’s design that utilizes secure enclaves, the network overhead does not exist in

MOSE because the enclave communicate with the storage via a high-speed memory bus, which is a

273 Gbps link for a regular dual-channel DDR4-2133 memory.

MOSE parallelizes computations as well as I/O accesses in each Circuit-ORAM access by

utilizing a multi-core CPU as follows. We split each (real/dummy) block of Circuit-ORAM into

multiple chunks, preferably as the number of parallelized threads, and encrypt each chunk separately

and independently from one another using parallelizable encryption techniques such as AES-CTR.

On performing a Circuit-ORAM access, the enclave spawns multiple threads to access such chunks

in parallel. Each thread is responsible to read/write its assigned chunks from/to the server’s storage

device and also perform encryption/decryption. This parallelization is simple, but more efficient

than [43], in which each CPU is assigned to an independent subtree in the ORAM tree structure,

which might incur a costly synchronization and unbalanced CPU workloads. Moreover, because

it only parallelizes a single ORAM access request, this parallelization is not vulnerable to the

asynchronousity attack [158].

A caveat on applying this parallelization is that meta-data components in the Circuit-ORAM

tree is very small in practice (less than 16B), the parallelization for meta-data computation is not

beneficial because initializing threads costs some delay. Therefore in MOSE, we use only one thread

to load the encrypted meta-data from the storage disk into the enclave memory space first, and then

creating multiple threads to process block data by chunks.
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In this study, we instantiate ACDS with matrix, which is the basic structure for access control

management. This design decision follows the same scalability principle: optimizing a single request.

Although matrix is storage-costly (sized as # of user × # of database files) than more compact

alternatives such as linked-list, it allows to get the user permission on a specific database block

directly when packaged into the ORAM blocks. Specifically, the cell ACDS[uid, id] can be packaged

into an ORAM block with ID id′ = (2 · uid ·N + id)/|B′|, where N is the number of database blocks,

and |B′| is the selected AC block size (in bits). On the contrary, with a linked-list structure, each

entry for uid stores an array of block IDs that uid can access to (or in reverse). Because the list is

different from each user, one might have to scan at least logarithmic number of entries in the list with

multiple ORAM executions (e.g., [182]), which will incur a high latency. Moreover, such structure

might be vulnerable to information leakage via list size and access timing, which cannot be prevented

by ORAM. Padding can mitigate this leakage, but it incurs more delay and is application-specific.

Note that the entire operation of MOSE is orthogonal to the selection of AC structure, so

any structure can be utilized. However, for the given scalability goal and security requirements, we

decide to sacrifice the storage for the other properties.

5.5.4 Security Analysis

We present the security notion for an enclave-assisted multi-user ORAM with access control,

and show how MOSE achieves them. Our model is inspired from [128, 129, 158] with the following

differences. In [128, 129], the security model captures multi-user ORAM and access control without a

trusted proxy (modeled as a secure enclave in MOSE). In [158], it captures a multi-user ORAM with

a trusted proxy over the asynchronous network setting but does not offer access control measures.

In MOSE, the enclave resides on an untrusted server and therefore, the network setting does not
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apply. We consider two main adversary properties including maliciousness, where they can actively

inject/tamper with the input and collusion, where both the user and server can collude with each

other.

Intuitively, an enclave-assisted multi-user ORAM with access control security is secure if the

server and an arbitrary subset of users, aside from what is trivially leaked by corrupted users, cannot

learn any information regarding the access patterns of honest users. We define this notion as follows.

Definition 18 (Enclave-assisted multi-user ORAM with access control security). Consider the following

experiment between an adversary A, which contains a set of malicious and colluding entities (e.g.,

users and server) and a challenger C (which works as OClient).

• Setup: C generates a database DB with N blocks for k users and initializes two empty lists UL

and QL. It executes (ko,EAC,EDB)← Gen(1λ,DB, k,N), and returns EAC and EDB to A.

• Learning phase:

– OaddU(uid): This oracle adds a user and its secret key to the list of colluding users as

UL ← UL ∪ {uid, kS}.

– OAccess(op, uid, id, data): If op = read, it executes ReadDB(uid, id; EAC,EDB). Otherwise, it

executes WriteDB(uid, id, data; EAC,EDB) (i.e., when op = write). It then executes data′ ←

Response(Ks, data) and add oi = 〈op, uid, id, data〉,AP(oi) to QL, where AP(o)i is the access

pattern when executing WriteDB, ReadDB and Response protocols.

• Distinguish phase: A prepares two access requests o1 = 〈op1, uid1,

id1, data1〉 and o2 = 〈op2, uid2, id2, data2〉.
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– Challenge(o1, o2): A queries the challenge oracle with two access requests o1 and o2 defined

above. If uid1 ∈ UL or uid2 ∈ UL, C aborts. Otherwise, C flips a random coin b ← {0, 1}

and executes ReadDB or WriteDB depending on opb and returns AP(ob) to the adversary.

The adversary can continue the learning phase with the exception of calling OaddU(uid1) or

OaddU(uid2). A eventually outputs a bit b′ to indicate if AP(ob) corresponds to o1 or o2.

At the end of the game, the adversary wins if b′ = b.

We also require that only the authorized users can learn about the database contents.

Moreover, the adversary can not violate data integrity.

Theorem 10. MOSE is secure by Definition 18 if the underlying ORAM and IND-CPA encryption

scheme are secure.

Proof. The game starts by running the Gen algorithm to initialize EDB, EAC and the ORAM key ko.

During the learning phase, the adversary can corrupt any user of its choice by simply querying its

key. A can adaptively query the OAccess oracle on access requests of its choice. At some point,

A decides to query the Challenge oracle. A prepares two access requests o1 = 〈op1, uid1, id1, data1〉

and o2 = 〈op2, uid2, id2, data2〉. Note that to rule out the trivial cases, we require that uid1 /∈ UL or

uid2 /∈ UL.

Upon initiating the Challenge oracle, C commits to a random coin b ← {0, 1}. For a

ob = 〈opb, uidb, idb, data′, data∗〉 submitted to the Challenge oracle, whether opb is a read or a

write operation, two ORAM accesses take place. The first ORAM access is to EAC to determine

the permission of uidb on idb. When (pb,EAC′) ← 〈ReadACA(EAC)(uidb, idb)〉 is called, EAC is

accessed by the underlying ORAM and the output (e.g., pb) is returned to C. After determining
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uidb’s permission on idb, C performs either a real or dummy ORAM access for data request ob on

EDB. This leads to memory access pattern AP(ob) on EDB where the output is returned through

data← 〈Response(Ks, data)〉 to uidb.

We now analyze the view of A for the access patterns and transcripts generated through

the above accesses. First, both EAC and EDB are encrypted via an IND-CPA encryption scheme

at all times. Second, when (pb,EAC′) ← 〈ReadACA(EAC)(uidb, idb)〉 is called, A does not have any

view on outputs to C, therefore, it cannot infer any information about pb. Moreover, since MOSE

leverages a secure ORAM, to access EAC, any memory access pattern generated by ORAM is

(computationally) indistinguishable by Definition 5 [41]. Third, based on the permission pb, whether

A has to perform a real or dummy access for request ob on EDB, due to the security of the underlying

ORAM, the generated access patterns AP(ob) for b ∈ {0, 1} is (computationally) indistinguishable

by Definition 5. Lastly, the output of Challenge to A is encrypted with an IND-CPA encryption and

therefore, indistinguishable for A. In all the above cases, for A to distinguish between AP(ob) based

on o1 and o2, it has to break the underlying ORAM or IND-CPA encryption.

Corollary 10. MOSE offers data secrecy and tamper resistance against malicious adversary.

Proof. Data secrecy in MOSE is based to the IND-CPA property of the underlying encryption scheme.

As pointed out in the above proof, EDB and EAC remain encrypted at all the times via an IND-CPA

encryption. Moreover, the returned values are also encrypted in the Response algorithm via the

underlying IND-CPA encryption. The tamper resistance of MOSE is based on the underling keyed

hash function (e.g., SHA-256) which is used to provide HMAC for each database block. Finally, the

integrity of the enforced access control mechanism ensures users cannot access (read/write) that

they do not have permission on.
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Although the enclave’s data is isolated and encrypted, attackers could indirectly learn about

the data via cache [78, 122, 134] or page-fault [31, 83, 187] side-channel attacks. Specifically, the

execution that retrieves a block from a read path of ORAM tree or accesses stash could leak

information related to data to such side channels. In this regard, MOSE provide defenses against

such attacks. On one hand, we access all blocks in a single path and the stash per each ORAM

access to prevent cache side-channel attacks. On the other hand, we implement our logic in the

enclave using CMOV instructions to remove conditional branches that potentially leaks via page-fault

side-channel when the enclave verifies the user permission.

5.5.5 Experimental Evaluation

5.5.5.1 Implementation

We implemented MOSE in C/C++ using the SGX SDK v1.7. Our implementation contains

approximately 2,982 lines of code for the untrusted modules and 780 lines of code for trusted modules.

We leveraged sgx_aes_ctr_encrypt() and sgx_read_rand() functions in the SGX SDK library, for

encrypting ORAM with AES-CTR mode and random number generation (via the RDRAND instruction),

respectively. We used pthread for spawning multiple threads to support parallelism in secure enclave.

Remark that we stored the position map components on the untrusted memory in the form of

recursive Circuit-ORAM structures. We also stored the stash components on the untrusted memory,

which are encrypted and loaded as plaintext only to the enclave memory space chunk-by-chunk (an

ECALL function handles this). In the following, we outline the configurations and methodology of

our evaluation (in §5.5.5.2), and then we evaluate the effectiveness of MOSE in terms of the delay

when handling single/multiple client request(s) with/without optimization and the storage overhead.
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5.5.5.2 Configurations and Methodology

We used a commodity desktop supporting SGX, which is equipped with a six-core Intel Core

i7-8700K CPU @ 3.70 GHz, 32 GB of dual-channel DDR4-2133 memory, and 4 TB NVMe SSD

drive.

We constructed a database DB containing 225 (33,554,432) random database blocks of size

24 KB (4 KB × six threads). We assumed basic 2-bit access policies (read and/or write) for 214

(16,384) users on such 225 blocks.

We evaluated the performance of MOSE in terms of latency, throughput, and memory usage,

by varying the database size, number of cores and ORAM cache level (see §5.5.5.3). Afterwards, we

applied various optimizations such as position map caching and k-top level caching (see §5.5.5.5).

We then analyze the effectiveness of MOSE in the multi-user environment, compare its performance

with TaoStore [158] under various database sizes. (see §5.5.5.6). We did not compare with other

proxy-based techniques [20, 158, 167] because their design is insecure against asynchronous timing

attack (see §5.2). We also did not compare MOSE with non-proxy ORAM primitives [22, 41] because

they incur high communication/computation overhead due to some cryptographic operations. For

scalability testing, we created a number of virtual users that send concurrent access requests to

MOSE with 50 ms network latency. We setup the following system parameters.

• MOSE: We selected standard parameters for Circuit-ORAM: bucket size Z = 2 with deterministic

eviction and stash size |S|= 80. To exploit parallelism on accessing the ORAM structure from

the NVMe disk drive, we divided each block of EDB into nt 4 KB chunks, where nt = 6 being

the number of threads for parallelism. We instantiated ACDS with a matrix for access control

management of 214 users on 225 data blocks. We divided ACDS into 12-KB blocks, and built
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recursive Circuit-ORAM trees for such blocks and their position map. Similar to EDB, we divided

each EAC block into nt chunks, and each chunk is of size 2 KB. For the recursion, we selected

the compression ratio r = 256.

• TaoStore [158]: We launched a simulation experiment for TaoStore with a conservative approach.

Our virtual TaoStore used Path-ORAM because it was used by default in [158] and is the most

efficient ORAM for (networked) client-server applications. We used the Path-ORAM standard

parameters: Z = 4, |S|= 80 [169]. We selected 1 Gbps of network throughputs with 10 ms

latency for simulating the execution of the Path-ORAM on the proxy. We excluded all execution

delays at the storage server and the proxy such as I/O access, decryption/encryption, thread

synchronization, etc. and only simulated the network delay of transmitting Path-ORAM paths

caused by executing Path-ORAM protocols (in parallel) over the network between the proxy and

the server. Our logic behind this experiment is that the network delay is inherent so it must be

included, and adding any of implementation to the server and proxy will incur more delay on

the execution side. Any actual implementation of TaoStore will involve more delay than this

simulation.

5.5.5.3 Single Request Processing Time

We first present MOSE’s response time in handling a single user request for various database

sizes from 6 GB to 768 GB, while not applying any optimizations such as k-level cache, etc. (see

Table 5.2). The size of database will affect the path length, so our enclave will read more data from

the ORAM, and therefore will result in more delay. In the base-case design, the average total delay of

MOSE is from 9.21 ms to 28.05 ms. In MOSE, the accesses on EAC and EDB can be slightly pipelined.

That is, right after finishing the access on EAC from one request, MOSE can issue the access on EAC
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Table 5.2: Delay of base-case MOSE in processing one user request.

DB
Size

Acc. Control (ms) Database (ms) Total
(ms)pmEAC EAC pmEDB EDB

6 GB 1.46 2.77 1.43 3.55 9.21
12 GB 1.64 2.78 1.54 3.72 9.62
24 GB 2.36 3.49 2.55 4.63 13.03
48 GB 2.51 3.79 3.46 6.29 16.05
96 GB 2.56 3.92 4.94 7.53 18.95
192 GB 2.78 4.13 6.05 8.7 21.66
384 GB 3.52 4.84 7.06 9.61 25.03
768 GB 3.67 5.14 7.97 11.27 28.05
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Figure 5.15: Delay breakdown of MOSE on a single user request.

of the next request while processing EDB access of the previous request. This pipelining strategy

allows MOSE to achieve the throughputs ranging from 200 ops to 53 ops for database sizes from

6 GB to 768 GB, respectively.

Note that these numbers do not reflect the optimized performance. Next, we will further

analyze factors that affect the total delay in MOSE, and then optimize them.
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5.5.5.4 Delay Breakdown

We dissect the cost of a single request to understand the factors that affect MOSE’s perfor-

mance. As illustrated in Figure 5.15, MOSE has two major sources of delay: (i) the I/O accesses

between enclave and disk incurred by Circuit-ORAM via encrypted read/write operations; (ii) the

secure computation (e.g., decryption/re-encryption/oblivious update operations) in the enclave. In

the breakdown, we can observe that most delays in MOSE are caused by four different I/O accesses:

The position map for the access control, the access control data, the position map for the database,

and the database block. For the database accesses, the delay is caused by their tree ORAM structure,

where each read/eviction operation requires accessing O(logN) blocks located in random positions

on the disk. For the position map accesses, 92% of its delay is caused by I/O access (uses only 8% of

time for computation) because it is stored in the recursive ORAM structures, which require multiple

access rounds. In the next section, we will evaluate optimization techniques applied to MOSE to

reduce this I/O delay.

5.5.5.5 Optimized MOSE

To reduce the single-request delay, we implemented various optimization techniques including

caching and parallelization to minimize the I/O access and computation delays.

We first cache the entire position map, stash, and metadata, all of which are required

to make an ORAM access, in the main memory. For instance, the size of position map is only

5.6 MB for a 12 GB DB and 47.8 MB for a 96 GB DB, while the size of stash and metadata are

approximately 400 MB. Due to their relatively small sizes, maintaining them in the main memory

incurs a low overhead. The second and third bars in Figure 5.16 illustrate the outcome of this

optimization. Caching the entire position map reduces the I/O delay from 14.93 ms to 8.03 ms
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Figure 5.16: Impact of caching on the I/O delay and memory usage of MOSE scheme.

(46.21% reduction). Moreover, caching the stash and meta-data components reduces I/O delay from

8.03 ms to 3.01 ms (62.51% reduction) on top of the position map caching. In summary, applying

the caching mechanisms reduces MOSE’s I/O delay from 14.93 ms to 3.01 ms, which is 79.83% delay

reduction (see the third bar of Figure 5.16), while incurring ≈ 500 MB of additional memory usage.

We also implemented the k-top caching strategy proposed in [127], which caches the first k

levels of the EDB and EAC structures, to reduce I/O delay in ORAM access. The latter bars (4th+)

of Figure 5.16 illustrates the outcome of the caching. Increasing the number of cached levels reduces

the I/O delay with the cost of a higher memory usage, however, note that performance gain increases

in linear (by reading H − k blocks where H is the tree height), and memory overhead increases

exponentially (caching 2(k+1) blocks for k-top caching). In this regard, we should set a practical limit

of cached level by which the server can accommodate its memory overhead. Overall, we can reduce

the I/O delay of MOSE from 14.93 ms to 0.68 ms by using around 10 GB of additional memory. As

shown in Figure 5.16, caching around 50-70% levels of EDB and EAC provides a reasonable memory

and I/O delay trade-off (e.g., 11–13 levels with 1GB RAM usage for 96GB DB).
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Figure 5.17: Impact of CPU cores on the efficiency and scalability of MOSE.

MOSE also leverages the parallelism in a multi-core CPU to speed up encryption/decryption

operations in the enclave, and this optimization makes MOSE scalable. The purple line in Figure 5.17

illustrates the impact of utilizing multiple CPU cores in MOSE’s computation logic. The performance

of MOSE increases in proportion to the number of CPU cores that MOSE uses. The actual gain

by a multi-core CPU is slightly lower than linear increment, e.g., using 6 physical cores improved

around 4× of the performance. This is because creating and assigning multiple threads into the

corresponding physical CPU core costs a fixed and remarkable overhead.

When all optimization techniques above are applied, MOSE will take 3.74 ms in total to

process an access request on a 24 KB block in a 96 GB DB, which consists of 0.56 ms I/O delay and

3.18 ms computation delay. This allows MOSE to process around 394 op/s with pipelining strategy.

MOSE’s performance is scalable, i.e., MOSE performs better with a more number of CPU

cores on the server. The blue line in Figure 5.17 illustrates how the number of concurrent users for

supporting less than one second delay increases as the number of cores that MOSE used for the

experiment increases.
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5.5.5.6 Multi-User Concurrent Access Performance

We ran an experiment on a virtual network that assumes 50 ms for the user network latency,

and it showed that on a 96 GB DB, MOSE can serve 374 concurrent requests, each accessing a

24 KB block without incurring more than a second delay for 374 users. In case if the server’s

service-level agreement (SLA) is to ensure average expected delay for each user to be one second,

MOSE can serve around 788 concurrent requests.

We compare the performance of MOSE with TaoStore [158] with varied database sizes.

We considered ten concurrent requests27 as originally presented in [158] for a fair performance

comparison. For the experiment, we simulated the performance of TaoStore according to 24KB

block size and varied database sizes ranging from 1GB to 1TB. Figure 5.18 presents the delay of

MOSE and TaoStore. Note that since our database and block size are larger than that of [158], the

reported delay of TaoStore in Figure 5.18 is higher than what is originally presented in [158]. Given

TaoStore is equipped with a highly dedicated network (i.e., 1 Gbps throughput), MOSE is still
27The notion of concurrency in TaoStore is limited by the communication bandwidth between the server and the
trusted proxy. The reason for having maximum ten concurrent users in their evaluation is mainly because ten
concurrent requests will max-out the bandwidth. Having more request than ten at the same time will drastically
degrade its performance, as stated in their paper.
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around 34.80–37.8× faster than TaoStore where MOSE (with optimization) achieved (on average)

13–21 ms delay for each request, compared with 525–731ms (on average) in TaoStore.

5.5.5.7 Storage Overhead

MOSE stores four encrypted components in the server’s untrusted storage device: EAC and

EDB, and their position maps. All of them are in the form of Circuit-ORAM tree structures, which

incur a constant (≈ 2×) storage blowup. Specifically, for the 96 GB DB with 214 users, EDB and

EAC cost approximately 206.8 GB and 103.7 GB, respectively. The position map components cost

approximately 48.8 MB (1/2000 of DB size).
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Chapter 6: Conclusion

In this dissertation, we developed a series of privacy-enhancing technologies featuring a high

level of privacy and security while offering mandatory functionalities for critical cyberinfrastructures.

We summarize our contributions as follows.

• Efficient searchable encryption techniques for critical cloud storage services: We introduced

IM-DSSE frameworks and FS-DSSE scheme, both of which offer mandatory security and privacy

features (e.g., forward privacy, backward privacy and size obliviousness) against statistical analysis

attacks, while achieving a high level of efficiency (i.e., low end-to-end delay, low computation

overhead).

• Efficient distributed ORAM schemes for data outsourcing applications: We proposed novel dis-

tributed ORAM schemes for data outsourcing applications including S3ORAM and MACAO.

Both S3ORAM and MACAO harness secret sharing techniques, which offer efficient homomorphic

properties to achieve desirable performance and security such as low delay, low storage, low com-

munication and computation overhead, and security against active adversaries. The experiments

on commodity cloud platform confirmed the efficiency of S3ORAM and MACAO compared with

the state-of-the-art.

• Efficient oblivious data structures for secure searchable encryption and database services: We

proposed DOD-DSSE and ODSE as oblivious data structures to mitigate/seal the search and

update pattern leakage on the encrypted index in searchable encryption. These techniques offer
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higher efficiency than the composition of generic ORAM and searchable encryption. We proposed

OMAT and OTREE as oblivious data structures that can be integrated with tree-based ORAM

scheme to enable oblivious queries on legacy database management systems (e.g., MongoDB,

SQL). The experiments on real commodity cloud platform confirmed the efficiency of the proposed

techniques.

• Efficient hardware-supported data storage and query platforms: We designed POSUP, an efficient

oblivious search and update platform for personal data outsourcing. By using Intel SGX to

implement ORAM controller directly on the untrusted server, POSUP mitigates the network

impact of ORAM, thereby featuring very low latency when tested on very large dataset with

commodity hardware. We further designed MOSE, an oblivious storage platform for multi-user

setting sharing the same database. By implementing proxy logics with Intel SGX, MOSE supports

oblivious access, access control and concurrent access in a much more efficient manner than the

state-the-art solutions.

6.1 Future Work

We briefly outline some of our potential research directions as follows.

We first focus on building practical oblivious distributed access systems. Distributed File

System (DFS) allows multiple clients to efficiently store and access the files remotely on the server(s)

anytime anywhere. It is critical to enable essential security services on DFS such as oblivious

access, access control, confidentiality and integrity. Although ORAM can offer ideal breach-resiliency

properties (e.g., oblivious access, confidentiality, integrity) for DFS, there is still a critical research

gap toward the integration of ORAM with DFS architecture. For instance, ORAM is mostly designed

in the single-client setting, and therefore it may not be directly compatible with the multi-client
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setting in DFS, which requires access control and parallel access features. Some client-efficient

ORAMs only offer security against semi-honest adversaries [89]. In practice, an active adversary

(e.g., malware) will likely be present in the DFS execution environment, who may inject malicious

inputs to compromise the system security and integrity. Meanwhile, the extension of such ORAMs

into the malicious setting may completely invalidate all client-efficiency gains [44, 54].

Toward filling this gap, we consider two research tasks as follows. First, we will propose

several new ORAM schemes for the DFS setting. Specifically, we will create new multi-client ORAM

schemes, which offer critical DFS features such as parallel access, access control enforcement and

authorization. We will seek possible solutions that rely only on cryptographic primitives. Our

second research task will focus on the creation of a full-fledged Oblivious DFS (ODFS) platform by

integrating modern DFS techniques with the new ORAM schemes. We will seek the most efficient

DFS and then analyze its unique characteristics and system requirements for the integration. This

research is expected to enable breach-resilient oblivious file systems that can serve as the core

building block to construct trustworthy and privacy-preserving data storage and analytics platforms

with a high level of security and efficiency.

Our second research direction focuses on efficient privacy-preserving machine learning. Ma-

chine Learning (ML) serves as the backbone of numerous intelligent applications such as virtual

assistant platforms, intrusion detection, automation and sophisticated surveillance. Since the data

to be processed by ML algorithms may be sensitive (e.g., personal data, location, biometrics), it is

critical to ensure their security and privacy during the processing. However, there is a substantial

research gap toward the creation of such secure, privacy-preserving yet practical ML techniques.

Existing Privacy-Preserving Machine Learning (PPML) methods generally rely on MPC and Fully

HE (FHE) techniques. Simply using these functional encryptions in the context of big data processing
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may suffer from not only high computation/communication overhead but also accuracy degradation.

For example, FHE and MPC offer limited arithmetic operations (e.g., addition, multiplication),

which may not be sufficient to realize complex yet critical ML subroutines (e.g., non-linear activation

layer, max-pooling functions). As a result, existing PPMLs [72, 133, 157] generally simplified ML

algorithms (e.g., limited non-linear layer, no convolution, limited number of instances) to fit with

these techniques, and therefore, the accuracy is decreased. The extension of FHE and MPC protocols

to the malicious setting incurs high communication and computation overhead.

Given that MPC, HE and TEE are three major tools to enable encrypted computation, we

will investigate the synergies between them to achieve the optimal trade-offs in terms of security,

performance and efficiency for specific application requirements. For instance, we will address the

security limitations of MPC-based approaches (e.g., collusion, active security) by bootstrapping them

with TEE. We will develop secure fundamental arithmetic operations (e.g., addition, multiplication,

division, factorization, floating-point operations) under the MPC and TEE composition models,

which will be then used as the core building blocks to develop kernel PPML algorithms. The strategic

use of secure hardware to complement algorithmic limitations of MPC will enable a breach-, collision-

and failure-resilient execution of ML techniques in the untrusted environments. We will propose new

PPML schemes based on the hybrid composition between FHE and MPC techniques, in such a way

that the computation and communication burdens are balanced, to achieve an optimal performance

regarding specific application/system constraints. As polynomial approximations in the activation

functions may impact both the complexity and accuracy of ML algorithms, we will also seek a

correct approximation method for each privacy-preserving scenario to achieve a good efficiency and

performance trade-off. Finally, instead of simplifying ML algorithms to fit with the underlying
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cryptographic primitives, we will realize their native form by synergizing efficient MPC, HE and

TEEs altogether to preserve their original accuracy.

We will also focus on designing efficient privacy-preserving data (pre)processing and feature

extraction schemes. Although these processing phases may greatly impact the overall efficiency of

the system, they are less likely to be investigated in the privacy-preserving context. We will then

build full-fledged PPML platforms for some critical applications (e.g., anomaly detection, biometric

identification/authentication) by harnessing all the developed techniques along with optimizations.

To this end, we will seek the possible integration between these new PPML platforms with the

oblivious access systems proposed above. This integration is expected to enable breach-resilient

multi-functional cloud platforms that can offer privacy-preserving data storage and ML services

simultaneously.

Finally, although PPMLs based on functional encryption offer a very high level of privacy,

they are not flexible due to their strict bond to a certain ML algorithm. Because many new ML

techniques are being proposed and renovated regularly, such cryptographic-based PPMLs must be

re-customized frequently to cope with these changes. Therefore, We will also investigate alternative

approaches such as federated learning or differential privacy, which focus more on preserving the

privacy of the input/output data rather than the entire ML computation. Although these approaches

may not offer the same level of security as cryptography-based PPMLs, they are more flexible and

efficient to be adopted with rapid changes in ML technologies while offering an adequate level of

privacy.

294



www.manaraa.com

References

[1] The clusion library. https://github.com/encryptedsystems/Clusion/.

[2] The enron email dataaset. http://www.cs.cmu.edu/~enron/.

[3] Zeromq distributed messaging. Available at http://zeromq.org.

[4] sparsehash: An extremely memory efficient hash_map implementation. Available at https:
//code.google.com/p/sparsehash/, February 2012.

[5] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and Ling Ren. Asymp-
totically tight bounds for composing oram with pir. In IACR Int. Workshop Public Key
Cryptography, pages 91–120. Springer, 2017.

[6] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to efficiently
evaluate ram programs with malicious security. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 702–729. Springer, 2015.

[7] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee.
Obfuscuro: A commodity obfuscation engine on intel sgx. In NDSS, 2019.

[8] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung Lee. Oblivi-
ate: A data oblivious filesystem for intel sgx. In NDSS, 2018.

[9] Anastasov Anton. Implementing onion oram: A constant bandwidth oram using ahe. https:
//github.com/aanastasov/onion-oram/blob/master/doc/report.pdf, 2016.

[10] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable oblivious
storage. In International Workshop on Public Key Cryptography, pages 131–148. Springer,
2014.

[11] attardi. WikiExtractor. https://github.com/attardi/wikiextractor.

[12] Adam J Aviv, Seung Geol Choi, Travis Mayberry, and Daniel S Roche. Oblivisync: Practical
oblivious file backup and synchronization. In NDSS, 2017.

[13] Chongxi Bao and Ankur Srivastava. Exploring timing side-channel attacks on path-orams. In
2017 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pages
68–73. IEEE, 2017.

[14] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Annual Interna-
tional Cryptology Conference, pages 420–432. Springer, 1991.

295

https://github.com/encryptedsystems/Clusion/
http://www.cs.cmu.edu/~enron/
http://zeromq.org
https://code.google.com/p/sparsehash/
https://code.google.com/p/sparsehash/
https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf
https://github.com/aanastasov/onion-oram/blob/master/doc/report.pdf
https://github.com/attardi/wikiextractor


www.manaraa.com

[15] R. Behnia, M. O. Ozmen, and A. A. Yavuz. Lattice-based public key searchable encryption
from experimental perspectives. IEEE Transactions on Dependable and Secure Computing,
pages 1–1, 2018.

[16] Rouzbeh Behnia, Attila Altay Yavuz, and Muslum Ozgur Ozmen. High-speed high-security
public key encryption with keyword search. In Giovanni Livraga and Sencun Zhu, editors,
Data and Applications Security and Privacy XXXI, pages 365–385, Cham, 2017. Springer
International Publishing.

[17] Amos Beimel and Yoav Stahl. Robust information-theoretic private information retrieval. In
International Conference on Security in Communication Networks, pages 326–341. Springer,
2002.

[18] Aner Ben-Efraim and Eran Omri. Turbospeedz: Double your online spdz! improving SPDZ
using function dependent preprocessing. In Applied Cryptography and Network Security —
ACNS 2019, June 5-7, 2019. To appear. Available at https://eprint.iacr.org/2019/080.

[19] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In Janos Simon, editor, Proceedings
of the 20th Annual ACM Symposium on Theory of Computing, pages 1–10. ACM, May 2-4,
1988.

[20] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan Huang.
Practicing oblivious access on cloud storage: the gap, the fallacy, and the new way forward. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
pages 837–849. ACM, 2015.

[21] Laura Blackstone, Seny Kamara, and Tarik Moataz. Revisiting leakage abuse attacks. IACR
Cryptology ePrint Archive, 2019:1175, 2019.

[22] Erik-Oliver Blass, Travis Mayberry, and Guevara Noubir. Multi-client oblivious ram secure
against malicious servers. In International Conference on Applied Cryptography and Network
Security, pages 686–707. Springer, 2017.

[23] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. Toward robust
hidden volumes using write-only oblivious ram. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 203–214. ACM, 2014.

[24] D. Boneh, G. D. Crescenzo, Rafail Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Proc. 23th Int. Conf. the Theory and Applications of Cryptographic Techn.
(EUROCRYPT ’04), pages 506–522, 2004.

[25] Christoph Bösch, Andreas Peter, Bram Leenders, Hoon Wei Lim, Qiang Tang, Huaxiong Wang,
Pieter Hartel, and Willem Jonker. Distributed searchable symmetric encryption. In Privacy,
Security and Trust (PST), 2014 Twelfth Annu. Int. Conf. on, pages 330–337. IEEE, 2014.

[26] Raphael Bost. Sophos - forward secure searchable encryption. In Proc. 2016 ACM Conf.
Comput. Commun. Security. ACM, 2016.

296

https://eprint.iacr.org/2019/080


www.manaraa.com

[27] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private searchable
encryption from constrained cryptographic primitives. In Proc. 2017 ACM SIGSAC Conf.
Comput. Commun. Security, pages 1465–1482. ACM, 2017.

[28] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and applications. In
Theory of Cryptography Conference, pages 175–204. Springer, 2016.

[29] Elette Boyle and Moni Naor. Is there an oblivious ram lower bound? In Proceedings of the
2016 ACM Conference on Innovations in Theoretical Computer Science, pages 357–368. ACM,
2016.

[30] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and
Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache Attacks Are Practical.

[31] Jo Van Bulck, Nico Weichbrodt, R. Kapitza, Frank Piessens, and Raoul Strackx. Telling Your
Secrets without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution. In
USENIX Security, 2017.

[32] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
CRYPTOLOGY, 13(1):143–202, 2000.

[33] Ning Cao, Cong Wang, Ming Li, Kui Ren, and Wenjing Lou. Privacy-preserving multi-keyword
ranked search over encrypted cloud data. IEEE Trans. Parallel Distributed Syst., 25(1):222–233,
2014.

[34] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks against
searchable encryption. In Proc. 22nd ACM CCS, pages 668–679, 2015.

[35] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawcyk, Marcel-Catalin
Rosu, and Michael Steiner. Dynamic searchable encryption in very-large databases: Data
structures and implementation. In 21th Annu. Network Distributed System Security Symp. —
NDSS 2014. The Internet Soc., February 23-26, 2014.

[36] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and
Michael Steiner. Highly-scalable searchable symmetric encryption with support for boolean
queries. In Advances in Cryptology, CRYPTO 2013, volume 8042 of Lecture Notes in Comput.
Sci., pages 353–373, 2013.

[37] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In Advances
in Cryptology - EUROCRYPT 2014, pages 351–368. Springer, 2014.

[38] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi. Solidus:
Confidential distributed ledger transactions via pvorm. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages 701–717, 2017.

[39] Anrin Chakraborti, Adam J Aviv, Seung Geol Choi, Travis Mayberry, Daniel S Roche, and
Radu Sion. roram: Efficient range oram with o (log2 n) locality. In NDSS, 2019.

[40] T-H Hubert Chan, Jonathan Katz, Kartik Nayak, Antigoni Polychroniadou, and Elaine Shi.
More is less: Perfectly secure oblivious algorithms in the multi-server setting. In International
Conference on the Theory and Application of Cryptology and Information Security, pages
158–188. Springer, 2018.

297



www.manaraa.com

[41] T-H Hubert Chan and Elaine Shi. Circuit opram: Unifying statistically and computationally
secure orams and oprams. In Theory of Cryptography Conference, pages 72–107. Springer,
2017.

[42] Zhao Chang, Dong Xie, and Feifei Li. Oblivious ram: a dissection and experimental evaluation.
Proceedings of the VLDB Endowment, 9(12):1113–1124, 2016.

[43] Binyi Chen, Huijia Lin, and Stefano Tessaro. Oblivious parallel ram: improved efficiency and
generic constructions. In Theory of Cryptography Conference, pages 205–234. Springer, 2016.

[44] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring oram: Efficient constant bandwidth
oblivious ram from (leveled) tfhe. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 345–360, 2019.

[45] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. Journal ACM (JACM), 45(6):965–981, 1998.

[46] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint Archive, Report
2016/086, 2016. http://eprint.iacr.org/2016/086.pdf.

[47] Victor Costan, Ilia Lebedev, Srinivas Devadas, et al. Secure Processors Part II: Intel SGX
security analysis and MIT Sanctum Architecture. Foundations and Trends R© in Electronic
Design Automation, 11(3):249–361, 2017.

[48] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit Agarwal, and Lorenzo
Alvisi. Obladi: Oblivious serializable transactions in the cloud. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pages 727–743, 2018.

[49] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 79–88. ACM, 2006.

[50] Ivan Damgård and Mads Jurik. A generalisation, a simpli. cation and some applications of pail-
lier’s probabilistic public-key system. In International Workshop on Public Key Cryptography,
pages 119–136. Springer, 2001.

[51] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012, pages
643–662. Springer, 2012.

[52] Jonathan Dautrich and Chinya Ravishankar. Combining oram with pir to minimize bandwidth
costs. In Proceedings of the 5th ACM Conference on Data and Application Security and Privacy,
pages 289–296. ACM, 2015.

[53] Tom St Denis. LibTomCrypt library. Available at http://libtom.org/?page=features&
newsitems=5&whatfile=crypt, Released May 12th, 2007.

[54] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi, and Daniel
Wichs. Onion oram: A constant bandwidth blowup oblivious ram. In Theory of Cryptography
Conference, pages 145–174. Springer, 2016.

298

http://eprint.iacr.org/2016/086.pdf
http://libtom.org/?page=features&newsitems=5&whatfile=crypt
http://libtom.org/?page=features&newsitems=5&whatfile=crypt


www.manaraa.com

[55] Judicael B Djoko, Jack Lange, and Adam J Lee. Nexus: Practical and secure access control on
untrusted storage platforms using client-side sgx. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 401–413. IEEE, 2019.

[56] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 523–535.
ACM, 2017.

[57] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agarwal,
Arvind Jain, and Natalia Sutin. An argument for increasing tcp’s initial congestion window.
Comput. Commun. Rev., 40(3):26–33, 2010.

[58] Mohammad Etemad, Alptekin Küpçü, Charalampos Papamanthou, and David Evans. Efficient
dynamic searchable encryption with forward privacy. Proc. Privacy Enhancing Technologies,
2018(1):5–20, 2018.

[59] Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-party oram for secure
computation. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 360–385. Springer, 2015.

[60] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. Iron: functional
encryption using intel sgx. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 765–782. ACM, 2017.

[61] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov. Bucket
oram: single online roundtrip, constant bandwidth oblivious ram. Technical report, IACR
Cryptology ePrint Archive, Report 2015, 1065, 2015.

[62] Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure processor architecture
for encrypted computation on untrusted programs. In Proceedings of the seventh ACM workshop
on Scalable trusted computing, pages 3–8. ACM, 2012.

[63] Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive oram: [nearly] free recursion and integrity verification for position-based oblivious
ram. In ASPLOS ’15, 2015.

[64] Christopher W Fletcher, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan, and Srinivas
Devadas. Suppressing the oblivious ram timing channel while making information leakage
and program efficiency trade-offs. In High Performance Computer Architecture (HPCA), 2014
IEEE 20th International Symposium on, pages 213–224. IEEE, 2014.

[65] Zhangjie Fu, Xinle Wu, Chaowen Guan, Xingming Sun, and Kui Ren. Toward efficient multi-
keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans.
Inform. Forensics Security, 11(12):2706–2716, 2016.

[66] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum, and
Ahmad-Reza Sadeghi. Hardidx: practical and secure index with sgx. In IFIP Annual Conference
on Data and Applications Security and Privacy, pages 386–408. Springer, 2017.

299



www.manaraa.com

[67] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. Tworam: round-optimal
oblivious ram with applications to searchable encryption. Technical report, IACR Cryptology
ePrint Archive, 2015: 1010, 2015.

[68] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified vss and fast-track multiparty
computations with applications to threshold cryptography. In Proceedings of the seventeenth
annual ACM symposium on Principles of distributed computing, pages 101–111. ACM, 1998.

[69] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[70] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proc. 41st Annu. ACM
Symp. Theory of computing, STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

[71] Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova, and Daniel
Wichs. Optimizing oram and using it efficiently for secure computation. In International
Symposium on Privacy Enhancing Technologies Symposium, pages 1–18. Springer, 2013.

[72] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In International Conference on Machine Learning, pages 201–210, 2016.

[73] Ian Goldberg. Improving the robustness of private information retrieval. In 2007 IEEE
Symposium on Security and Privacy (SP’07), pages 131–148. IEEE, 2007.

[74] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 182–194.
ACM, 1987.

[75] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation oblivious rams.
Journal ACM (JACM), 43(3):431–473, 1996.

[76] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana
Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time.
In Proceedings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, page 513–524, New York, NY, USA, 2012. Association for Computing Machinery.

[77] S Dov Gordon, Jonathan Katz, and Xiao Wang. Simple and efficient two-server oram. In
International Conference on the Theory and Application of Cryptology and Information Security,
pages 141–157. Springer, 2018.

[78] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. Cache Attacks on
Intel SGX. In Proceedings of the 10th European Workshop on Systems Security (EuroSec),
2017.

[79] Matthew D Green and Ian Miers. Forward secure asynchronous messaging from puncturable
encryption. In Security Privacy (SP), 2015 IEEE Symp. on, pages 305–320. IEEE, 2015.

[80] Shay Gueron. White Paper: Intel Advanced Encryption Standard (AES) New In-
structions Set. Available at https://software.intel.com/sites/default/files/article/165683/
aes-wp-2012-09-22-v01.pdf, Document Revision 3.01, September 2012.

300

https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf
https://software.intel.com/sites/default/files/article/165683/aes-wp-2012-09-22-v01.pdf


www.manaraa.com

[81] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Foundations of Computer Science, 1998. Proceedings. 39th Annual
Symposium on, pages 28–37. IEEE, 1998.

[82] Florian Hahn and Florian Kerschbaum. Searchable encryption with secure and efficient updates.
In Proc. 2014 ACM SIGSAC Conf. Comput. and Commun. Security, pages 310–320. ACM,
2014.

[83] M. Hähnel, W. Cui, and M. Peinado. High-Resolution Side Channels for Untrusted Operating
Systems.

[84] Ryan Henry, Amir Herzberg, and Aniket Kate. Blockchain access privacy: Challenges and
directions. IEEE Security & Privacy, 16:38–45, 07 2018.

[85] Thang Hoang. Im-dsse framework implementation. https://github.com/thanghoang/IM-DSSE,
2017.

[86] Thang Hoang, Rouzbeh Behnia, Yeongjin Jang, and Attila A Yavuz. MOSE: Practical multi-
user oblivious storage via secure enclaves. In Proceedings of the Tenth ACM Conference on Data
and Application Security and Privacy, pages 17–28. ACM, 2020. Reprinted. The final publication
is available at ACM Digital Library through https:// doi.org/ 10.1145/ 3374664.3375749 .

[87] Thang Hoang, Jorge Guajardo, and Attila A Yavuz. MACAO: A maliciously-secure and
client-efficient active ORAM framework. In Annual Network and Distributed System Security
Symposium, NDSS, 2020. Reprinted. The final publication is available at https:// doi.org/ 10.
14722/ ndss.2020.24313 .

[88] Thang Hoang, Ceyhun D Ozkaptan, Gabriel Anton Hackebeil, and Attila Altay Yavuz. Efficient
oblivious data structures for database services on the cloud. IEEE Transactions on Cloud
Computing, 2018. Reprinted. The final publication is available at IEEE Xplore through https:
// doi.org/ 10.1109/TCC.2018.2879104 .

[89] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam Nguyen.
S3ORAM: A computation-efficient and constant client bandwidth blowup oram with shamir
secret sharing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 491–505. ACM, 2017. Reprinted. The final publication is
available at ACM Digital Library through https:// doi.org/ 10.1145/ 3133956.3134090 .

[90] Thang Hoang and Ceyhun Ozkaptan D. Implementation of s3oram. Available at https:
//github.com/thanghoang/S3ORAM, 2017.

[91] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and Attila A Yavuz. Hardware-supported
oram in effect: Practical oblivious search and update on very large dataset. Proceedings on
Privacy Enhancing Technologies, 2019(1):172–191, 2019. Reprinted. The final publication is
available at Sciendo through https:// doi.org/ 10.2478/ popets-2019-0010 .

[92] Thang Hoang, Attila Yavuz, and Jorge Guajardo. Practical and secure dynamic searchable
encryption via oblivious access on distributed data structure. In Proc. 32nd Annu. Comput.
Security Applications Conf. (ACSAC). ACM, 2016. Reprinted. The final publication is available
at ACM Digital Library through https:// doi.org/ 10.1145/ 2991079.2991088 .

301

https://github.com/thanghoang/IM-DSSE
https://doi.org/10.1145/3374664.3375749
https://doi.org/10.14722/ndss.2020.24313
https://doi.org/10.14722/ndss.2020.24313
https://doi.org/10.1109/TCC.2018.2879104
https://doi.org/10.1109/TCC.2018.2879104
https://doi.org/10.1145/3133956.3134090
https://github.com/thanghoang/S3ORAM
https://github.com/thanghoang/S3ORAM
https://doi.org/10.2478/popets-2019-0010
https://doi.org/10.1145/2991079.2991088


www.manaraa.com

[93] Thang Hoang, Attila A Yavuz, F Betül Durak, and Jorge Guajardo. A multi-server oblivious dy-
namic searchable encryption framework. Journal of Computer Security, pages 1–28. Reprinted.
The final publication is available at IOS Press through https:// doi.org/ 10.3233/ JCS-191300 .

[94] Thang Hoang, Attila A Yavuz, F Betül Durak, and Jorge Guajardo. Oblivious dynamic
searchable encryption on distributed cloud systems. In IFIP Annual Conference on Data
and Applications Security and Privacy, pages 113–130. Springer, 2018. Reprinted. The final
publication is available at Springer through https:// doi.org/ 10.1007/ 978-3-319-95729-6_8 .

[95] Thang Hoang, Attila A Yavuz, and Jorge Guajardo. A multi-server oram framework with
constant client bandwidth blowup. ACM Transactions on Privacy and Security (TOPS),
23(1):1–35, 2020. Reprinted. The final publication is available at ACM Digital Library through
https:// doi.org/ 10.1145/ 3369108 .

[96] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. Practical and secure dynamic
searchable encryption via oblivious access on distributed data structure. In Proceedings of the
32nd Annual Conference on Computer Security Applications, pages 302–313, 2016. Reprinted.
The final publication is available at ACM Digital Library through https:// doi.org/ 10.1145/
2991079.2991088 .

[97] Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo Merchan. A secure searchable
encryption framework for privacy-critical cloud storage services. IEEE Transactions on
Services Computing, 2019. Reprinted. The final publication is available at IEEE Xplore through
https:// doi.org/ 10.1109/TSC.2019.2897096 .

[98] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. Ryoan: A
distributed sandbox for untrusted computation on secret data.

[99] iMatix. Zeromq distributed messaging library 4.1.3. http://zeromq.org/community, September
2015. [Online; accessed September 2015].

[100] Intel Corporation. Intel Software Guard Extensions Programming Reference (rev1), September
2013. 329298-001US.

[101] Intel Corporation. Intel Software Guard Extensions Programming Reference (rev2), October
2014. 329298-002US.

[102] Intel Corporation. Intel Software Guard Extensions SDK for Linux OS (Developer Refer-
ence), 2016. https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_
Reference_Linux_1.7_Open_Source.pdf.

[103] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In Annual Network and Distributed
System Security Symposium – NDSS, volume 20, page 12, 2012.

[104] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Inference attack against
encrypted range queries on outsourced databases. In Proceedings of the 4th ACM conference
on Data and application security and privacy, pages 235–246, 2014.

302

https://doi.org/10.3233/JCS-191300
https://doi.org/10.1007/978-3-319-95729-6_8
https://doi.org/10.1145/3369108
https://doi.org/10.1145/2991079.2991088
https://doi.org/10.1145/2991079.2991088
https://doi.org/10.1109/TSC.2019.2897096
http://zeromq.org/community
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.7_Open_Source.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_SDK_Developer_Reference_Linux_1.7_Open_Source.pdf


www.manaraa.com

[105] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan (Part III: Fundamental Electronic
Science), 72(9):56–64, 1989.

[106] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-Bomb: Locking Down the
Processor via Rowhammer Attack.

[107] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with worst-case
sub-linear complexity. EUROCRYPT 2017, 2017.

[108] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable symmetric
encryption. In Financial Cryptography and Data Security (FC), volume 7859 of Lecture Notes
in Comput. Sci., pages 258–274. Springer Berlin Heidelberg, 2013.

[109] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmetric
encryption. In Proc. 2012 ACM Conf. Comput. Commun. security, pages 965–976, New York,
NY, USA, 2012. ACM.

[110] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC Press, 2014.

[111] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic attacks on secure
outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1329–1340, 2016.

[112] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making spdz great again. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 158–189. Springer, 2018.

[113] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for mpc. In International
Conference on the Theory and Application of Cryptology and Information Security, pages
506–525. Springer, 2014.

[114] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty computation for
ram. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 91–124. Springer, 2018.

[115] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim. Forward
secure dynamic searchable symmetric encryption with efficient updates. In Proc. 2017 ACM
SIGSAC Conf. Comput. Commun. Security, pages 1449–1463. ACM, 2017.

[116] Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious ram with small block
size. In IACR International Workshop on Public Key Cryptography, pages 3–33. Springer,
2019.

[117] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved reconstruction
attacks on encrypted data using range query leakage. 2018 IEEE Symposium on Security and
Privacy (SP), pages 297–314, 2017.

[118] Russell WF Lai and Sherman SM Chow. Forward-secure searchable encryption on labeled
bipartite graphs. In Int. Conf. Appl. Cryptography Network Security, pages 478–497. Springer,
2017.

303



www.manaraa.com

[119] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious ram lower bound! In
Annual International Cryptology Conference, pages 523–542. Springer, 2018.

[120] Duc Van Le, Lizzy Tengana Hurtado, Adil Ahmad, Mohsen Minaei, Byoungyoung Lee, and
Aniket Kate. A tale of two trees: One writes, and other reads. optimized oblivious accesses to
large-scale blockchains. ArXiv, abs/1909.01531, 2019.

[121] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi, Taesoo
Kim, Marcus Peinado, and Brent B Kang. Hacking in darkness: Return-oriented programming
against secure enclaves. In USENIX Security, pages 523–539, 2017.

[122] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing. In USENIX
Security, 2017.

[123] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and Elaine Shi.
Ghostrider: A hardware-software system for memory trace oblivious computation. In ASPLOS
’15, 2015.

[124] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-an Tan. Search pattern leakage in
searchable encryption: Attacks and new construction. Inform. Sci., 265:176–188, 2014.

[125] Jacob R Lorch, Bryan Parno, James Mickens, Mariana Raykova, and Joshua Schiffman. Shroud:
Ensuring private access to large-scale data in the data center. In Presented as part of the 11th
{USENIX} Conference on File and Storage Technologies ({FAST} 13), pages 199–213, 2013.

[126] Steve Lu and Rafail Ostrovsky. Distributed oblivious ram for secure two-party computation.
In Theory of Cryptography, pages 377–396. Springer, 2013.

[127] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John
Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a secure processor.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 311–324. ACM, 2013.

[128] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. Privacy and access
control for outsourced personal records. In 2015 IEEE Symposium on Security and Privacy,
pages 341–358. IEEE, 2015.

[129] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schroder. Maliciously secure
multi-client oram. In International Conference on Applied Cryptography and Network Security,
pages 645–664. Springer, 2017.

[130] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file retrieval by
combining oram and pir. In NDSS. Citeseer, 2014.

[131] Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. Chf-oram: A constant communication
oram without homomorphic encryption.

[132] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant communication oram with
small blocksize. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 862–873. ACM, 2015.

304



www.manaraa.com

[133] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38. IEEE,
2017.

[134] Urs Müller. Software grand exposure:{SGX} cache attacks are practical. In 11th USENIX
Workshop on Offensive Technologies,{WOOT} 2017, Vancouver, BC, Canada, August 14-15,
2017. USENIX, 2017.

[135] Vaishali Narkhede, Karuna Joshi, Adam J Aviv, Seung Geol Choi, Daniel S Roche, and Tim
Finin. Managing cloud storage obliviously. In 2016 IEEE 9th International Conference on
Cloud Computing (CLOUD), pages 990–993. IEEE, 2016.

[136] Muhammad Naveed. The fallacy of composition of oblivious ram and searchable encryption.
Technical report, Cryptology ePrint Archive, Report 2015/668, 2015.

[137] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on property-
preserving encrypted databases. In Proc. 22nd ACM CCS, pages 644–655, 2015.

[138] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable encryption
via blind storage. In 35th IEEE Symp. Security Privacy, pages 48–62, May 2014.

[139] Kartik Nayak, Christopher W Fletcher, Ling Ren, Nishanth Chandran, Satya V Lokam, Elaine
Shi, and Vipul Goyal. Hop: Hardware makes obfuscation practical. In NDSS, 2017.

[140] Kartik Nayak and Jonathan Katz. An oblivious parallel ram with o (log2 n) parallel runtime
blowup. IACR Cryptology ePrint Archive, 2016:1141, 2016.

[141] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary physics,
46(5):323–351, 2005.

[142] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil
Vaswani, and Manuel Costa. Oblivious multi-party machine learning on trusted processors. In
USENIX Security Symposium, pages 619–636, 2016.

[143] Muslum Ozgur Ozmen, Thang Hoang, and Attila A Yavuz. Forward-private dynamic search-
able symmetric encryption with efficient search. In 2018 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2018. Reprinted. The final publication is available
at IEEE Xplore through https:// doi.org/ 10.1109/ ICC.2018.8422480 .

[144] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
International Conference on the Theory and Applications of Cryptographic Techniques, pages
223–238. Springer, 1999.

[145] Benny Pinkas and Tzachy Reinman. Oblivious ram revisited. In Proc. 30th Annu. Conf.
Advances in Cryptology, CRYPTO’10, pages 502–519, Berlin, Heidelberg, 2010. Springer-Verlag.

[146] Julius Plenz. nocache - minimize filesystem caching effects. Available at https://github.com/
Feh/nocache.

[147] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb:
processing queries on an encrypted database. Communications of the ACM, 55(9):103–111,
2012.

305

https://doi.org/10.1109/ICC.2018.8422480
https://github.com/Feh/nocache
https://github.com/Feh/nocache


www.manaraa.com

[148] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In Proc. 2016 ACM Conf. Comput. Commun.
Security. ACM, 2016.

[149] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing digital side-channels through
obfuscated execution. In USENIX Security Symposium, pages 431–446, 2015.

[150] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk,
and Srinivas Devadas. Ring oram: Closing the gap between small and large client storage
oblivious ram. IACR Cryptology ePrint Archive, 2014:997, 2014.

[151] Ling Ren, Christopher W Fletcher, Albert Kwon, Marten Van Dijk, and Srinivas Devadas.
Design and implementation of the ascend secure processor. IEEE Transactions on Dependable
and Secure Computing, 16(2):204–216, 2017.

[152] Ling Ren, Xiangyao Yu, Christopher W Fletcher, Marten Van Dijk, and Srinivas Devadas.
Design space exploration and optimization of path oblivious ram in secure processors. ACM
SIGARCH Computer Architecture News, 41(3):571–582, 2013.

[153] Panagiotis Rizomiliotis and Stefanos Gritzalis. Oram based forward privacy preserving dynamic
searchable symmetric encryption schemes. In Proc. 2015 ACM Workshop Cloud Computing
Security Workshop, pages 65–76. ACM, 2015.

[154] Daniel S Roche, Adam Aviv, and Seung Geol Choi. A practical oblivious map data structure
with secure deletion and history independence. In 2016 IEEE Symposium on Security and
Privacy (SP), pages 178–197. IEEE, 2016.

[155] Daniel S Roche, Adam Aviv, Seung Geol Choi, and Travis Mayberry. Deterministic, stash-free
write-only oram. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 507–521. ACM, 2017.

[156] Cédric Van Rompay, Refik Molva, and Melek Önen. A leakage-abuse attack against multi-user
searchable encryption. Proceedings on Privacy Enhancing Technologies, 2017:168 – 178, 2017.

[157] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable provably-
secure deep learning. In Proceedings of the 55th Annual Design Automation Conference, page 2.
ACM, 2018.

[158] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro. Taostore:
Overcoming asynchronicity in oblivious data storage. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 198–217. IEEE, 2016.

[159] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. Zerotrace: Oblivious memory prim-
itives from intel sgx. In Symposium on Network and Distributed System Security (NDSS),
2018.

[160] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[161] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious ram with o((logn)3)
worst-case cost. In Proc. 17th Int. Conf. The Theory and Application of Cryptology and Inform.
Security, ASIACRYPT’11, pages 197–214, Berlin, Heidelberg, 2011. Springer-Verlag.

306



www.manaraa.com

[162] Victor Shoup. Ntl: A library for doing number theory. Available at http://www.shoup.net/ntl/,
2016.

[163] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches on
encrypted data. In Proc. 2000 IEEE Symp. Security and Privacy, pages 44–55, 2000.

[164] Xiangfu Song, Changyu Dong, Ddadan Yuan, Qiuliang Xu, and Minghao Zhao. Forward
private searchable symmetric encryption with optimized i/o efficiency. IEEE Trans. Dependable
Secure Computing, 2018.

[165] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic searchable
encryption with small leakage. In 21st Annual Network and Distributed System Security
Symposium, NDSS 2014. The Internet Society, February 23-26 2014.

[166] Emil Stefanov and Elaine Shi. Multi-cloud oblivious storage. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 247–258. ACM, 2013.

[167] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 253–267. IEEE, 2013.

[168] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivious ram. In
19th Annu. Network and Distributed System Security Symp. — NDSS 2012. The Internet Soc.,
February 2012.

[169] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path oram: an extremely simple oblivious ram protocol. In Proc. 2013
ACM SIGSAC Conf. Comput. Commun. security, pages 299–310. ACM, 2013.

[170] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li. Verifiable privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. IEEE Transactions
on Parallel and Distributed Systems, 25(11):3025–3035, Nov 2014.

[171] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y Thomas Hou, and Hui Li.
Verifiable privacy-preserving multi-keyword text search in the cloud supporting similarity-based
ranking. IEEE Trans. Parallel Distributed Syst., 25(11):3025–3035, 2014.

[172] Wenhai Sun, Ruide Zhang, Wenjing Lou, and Y Thomas Hou. Rearguard: Secure keyword
search using trusted hardware. In IEEE INFOCOM, 2018.

[173] Shruti Tople, Yaoqi Jia, and Prateek Saxena. Pro-oram: Practical read-only oblivious {RAM}.
In 22nd International Symposium on Research in Attacks, Intrusions and Defenses ({RAID}
2019), 2020.

[174] Jonathan Trostle and Andy Parrish. Efficient computationally private information retrieval
from anonymity or trapdoor groups. In International Conference on Information Security,
pages 114–128. Springer, 2010.

[175] B. Wang, M. Li, and L. Xiong. Fastgeo: Efficient geometric range queries on encrypted spatial
data. IEEE Transactions on Dependable and Secure Computing, PP(99):1–1, 2017.

307

http://www.shoup.net/ntl/


www.manaraa.com

[176] Boyang Wang, Yantian Hou, Ming Li, Haitao Wang, and Hui Li. Maple: Scalable multi-
dimensional range search over encrypted cloud data with tree-based index. In Proceedings
of the 9th ACM Symposium on Information, Computer and Communications Security, ASIA
CCS ’14, pages 111–122, New York, NY, USA, 2014. ACM.

[177] Qian Wang, Meiqi He, Minxin Du, Sherman SM Chow, Russell WF Lai, and Qin Zou.
Searchable encryption over feature-rich data. IEEE Trans. Dependable Secure Computing,
2016.

[178] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang, Vincent Bind-
schaedler, Haixu Tang, and Carl A Gunter. Leaky cauldron on the dark land: Understanding
memory side-channel hazards in sgx. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2421–2434, 2017.

[179] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness of the goldreich-
ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 850–861. ACM, 2015.

[180] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient
maliciously secure two-party computation. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 21–37, New York, NY, USA, 2017.
Association for Computing Machinery.

[181] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi. Scoram:
oblivious ram for secure computation. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 191–202. ACM, 2014.

[182] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov, and Yan
Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 215–226. ACM, 2014.

[183] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. The RISC-V
Instruction Set Manual, Volume I: Base User-level ISA. EECS Department, UC Berkeley, Tech.
Rep. UCB/EECS-2011-62, 2011.

[184] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. AsyncShock: Exploiting
synchronisation bugs in Intel SGX enclaves.

[185] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes, December 30
1986. US Patent 4,633,470.

[186] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file system. In
Proceedings of the 2012 ACM conference on Computer and communications security, pages
977–988. ACM, 2012.

[187] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In 2015 IEEE Symposium on Security and
Privacy, pages 640–656. IEEE, 2015.

[188] Andrew C Yao. Protocols for secure computations. In 23rd Annual Symposium on Foundations
of Computer Science, 1982., pages 160–164. IEEE, 1982.

308



www.manaraa.com

[189] Attila A. Yavuz and Jorge Guajardo. Dynamic searchable symmetric encryption with minimal
leakage and efficient updates on commodity hardware. In Selected Areas in Cryptography –
SAC 2015, Lecture Notes in Computer Science. Springer International Publishing, August
2015.

[190] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are belong
to us: The power of file-injection attacks on searchable encryption. In 25th USENIX Security
’16, pages 707–720, Austin, TX, 2016.

309



www.manaraa.com

Appendix A: Copyright Permissions

The permission below is for the reproduction of material in Chapter 3, Chapter 4 and Chapter

5 from the following publishers.

1. IEEE:

 

310



www.manaraa.com

2. ACM:

3. Springer:

4. Sciendo:

5. IOS Press:

311



www.manaraa.com

About the Author

Thang Hoang was born in Ho Chi Minh city, Vietnam. He was a PhD student at Oregon State

University in 2015–2018 and then transferred to the University of South Florida in 2019. He received

his MS degree in Computer Science from Chonnam National University (South Korea) in 2014, and

his BS degree in Computer Science from the University of Science, VNU-HCMC (Vietnam) in 2010.

His research interests include applied cryptography, data privacy, privacy-enhancing technologies

and mobile security.


	List of Tables
	List of Figures
	Abstract
	Introduction
	Contributions
	Dissertation Organization

	Notation
	Searchable Encryption
	Introduction
	Related Work
	Preliminaries
	[0.85]IM-DSSE: Searchable Encryption Framework for Critical Cloud Services
	System and Threat Models
	System Model
	Threat Model

	Data Structures
	[0.85]IM-DSSE Main Scheme
	Setup Algorithm
	Search Protocol
	Update Protocol
	Cost Analysis

	IM-DSSE Extended Schemes
	[0.85]IM-DSSE[0.85]I: Minimized Search Latency
	[0.85]IM-DSSE[0.85]II: Achieving Cloud SaaS with Backward Privacy
	[0.85]IM-DSSE[0.85]I+II: Efficient Search with Backward Privacy

	Security Analysis
	Experimental Evaluation
	Implementation
	Configurations and Methodology
	Overall Results.
	The Impact of Network Quality.
	The Impact of I/O Access
	Cost Breakdown.


	FS-DSSE: Forward-Private Searchable Encryption with Efficient Search
	 FS-DSSE Data Structures
	Detailed FS-DSSE Algorithms
	Setup Algorithm
	Search Protocol
	Update Protocol

	Security Analysis
	Experimental Evaluation
	Configurations and Methodology
	Overall Results



	Oblivious RAM
	Introduction
	Related Work
	Preliminaries
	Tree-ORAM
	Path-ORAM
	Circuit-ORAM
	Write-Only ORAM
	Oblivious Data Structures
	Multi-Party Computation
	Shamir Secret Sharing
	Additive Secret Sharing

	Private Information Retrieval

	S3ORAM: A Multi-Server ORAM Framework with Constant Client-Bandwidth
	System and Security Models
	System Model
	Security Model

	The Proposed S3ORAM Framework
	Data Structure
	S3ORAMO:  S3ORAM with Low Client Storage
	S3ORAMC:  S3ORAM with Low Server Computation

	Security Analysis
	Generalization of  S3ORAM on  k-ary Tree
	 k-ary  S3ORAMO
	 k-ary  S3ORAMC

	Experimental Evaluation
	Implementation
	Configuration and Methodology
	End-to-End Delay
	Cost Breakdown Analysis
	The Impact of Network Quality
	The Impact of  k-ary Tree Layout
	Storage Overhead


	MACAO: A Multi-Server ORAM Framework with Active Security
	System and Security Models
	System Model
	Security Model

	The Proposed MACAO Framework
	ORAM in the Malicious Setting
	Our Sub-Protocols
	MACAO Schemes
	Security Analysis
	Cost Analysis
	Extensions

	Experimental Evaluation
	Implementation
	Configuration and Methodology
	Setup Delay
	Overall Result
	Cost Breakdown
	Performance with Varying Privacy Levels


	Oblivious Data Structures
	Distributed Data Structure for Oblivious Searchable Encryption
	System and Security Models
	The Proposed  DOD-DSSE Scheme
	Security Analysis
	Experimental Evaluation

	ODSE: Oblivious Dynamic Searchable Encryption
	System and Threat Models
	The Proposed Semi-Honest  ODSE Schemes
	Security Analysis
	ODSE with Malicious Security
	Experimental Evaluation

	OMAT and OTREE: Oblivious Data Structures for Database Services
	OMAT: Oblivious Access on Table Structures
	OTREE: Oblivious Access on Tree Structures
	Security Analysis
	Experimental Evaluation



	Hardware-Supported Oblivious Storage and Query Platforms
	Introduction
	Related Work
	Intel-SGX
	POSUP: Practical Oblivious Search and Update Platform
	System and Threat Models
	System Model
	Threat Model

	POSUP Building Blocks
	The Proposed  POSUP Platform
	Oblivious Data Structures
	 POSUP Oblivious Update Protocol
	POSUP Oblivious Search Protocol

	Extension to Multi-User Setting
	Security Analysis
	Experimental Evaluation
	Implementation
	Configuration and Methodology
	Micro Benchmark
	Search Delay
	Update Delay
	Storage Overhead


	MOSE: Multi-User Oblivious Storage Platform
	High-Level Architecture
	System and Threat Models
	System Model
	Threat Model

	Design of MOSE
	System Initialization
	Handling User Request with Access Control
	Towards Scalable Oblivious Access

	Security Analysis
	Experimental Evaluation
	Implementation
	Configurations and Methodology
	Single Request Processing Time
	Delay Breakdown
	Optimized MOSE
	Multi-User Concurrent Access Performance
	Storage Overhead



	Conclusion
	Future Work

	References
	Appendix A: Copyright Permissions to.44em.

